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Preface 

 
 
 
 This book resulted largely from an accident. I was faced with teaching 
celestial mechanics at The Ohio State University during the Winter Quarter of 
1988. As a result of a variety of errors, no textbook would be available to the 
students until very late in the quarter at the earliest. Since my approach to the 
subject has generally been non-traditional, a textbook would have been of 
marginal utility in any event, so I decided to write up what I would be teaching 
so that the students would have something to review beside lecture notes. This is 
the result. 
 
 Celestial mechanics is a course that is fast disappearing from the curricula 
of astronomy departments across the country. The pressure to present the new 
and exciting discoveries of the past quarter century has led to the demise of a 
number of traditional subjects. In point of fact, very few astronomers are 
involved in traditional celestial mechanics. Indeed, I doubt if many could 
determine the orbital elements of a passing comet and predict its future path 
based on three positional measurements without a good deal of study. This was a 
classical problem in celestial mechanics at the turn of this century and any 
astronomer worth his degree would have had little difficulty solving it. Times, as 
well as disciplines, change and I would be among the first to recommend the 
deletion from the college curriculum of the traditional course in celestial 
mechanics such as the one I had twenty five years ago. 
 
 There are, however, many aspects of celestial mechanics that are common 
to other disciplines of science. A knowledge of the mathematics of coordinate 
transformations will serve well any astronomer, whether observer or theoretician. 
The classical mechanics of Lagrange and Hamilton will prove useful to anyone 
who must sometime in a career analyze the dynamical motion of a planet, star, or 
galaxy. It can also be used to arrive at the equations of motion for objects in the 
solar system. The fundamental constraints on the N-body problem should be 
familiar to anyone who would hope to understand the dynamics of stellar 
systems. And perturbation theory is one of the most widely used tools in 
theoretical physics. The fact that it is more successful in quantum mechanics than 
in celestial mechanics speaks more to the relative intrinsic difficulty of the 
theories than to the methods. Thus celestial mechanics can be used as a vehicle to 
introduce students to a whole host of subjects that they should know. I feel that 
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this is perhaps the appropriate role for the contemporary study of celestial 
mechanics at the undergraduate level.  
 
 This is not to imply that there are no interesting problems left in celestial 
mechanics. There still exists no satisfactory explanation for the Kirkwood Gaps 
of the asteroid belt. The ring system of Saturn is still far from understood. The 
theory of the motion of the moon may give us clues as to the origin of the moon, 
but the issue is still far from resolved. Unsolved problems are simply too hard for 
solutions to be found by any who do not devote a great deal of time and effort to 
them. An introductory course cannot hope to prepare students adequately to 
tackle these problems. In addition, many of the traditional approaches to 
problems were developed to minimize computation by accepting only 
approximate solutions. These approaches are truly fossils of interest only to those 
who study the development and history of science. The computational power 
available to the contemporary scientist enables a more straightforward, though 
perhaps less elegant, solution to many of the traditional problems of celestial 
mechanics. A student interested in the contemporary approach to such problems 
would be well advised to obtain a through grounding in the numerical solution of 
differential equations before approaching these problems of celestial mechanics.  
 
 I have mentioned a number of areas of mathematics and physics that bear 
on the study of celestial mechanics and suggested that it can provide examples 
for the application of these techniques to practical problems. I have attempted to 
supply only an introduction to these subjects. The reader should not be 
disappointed that these subjects are not covered completely and with full rigor as 
this was not my intention. Hopefully, his or her appetite will be 'whetted' to learn 
more as each constitutes a significant course of study in and of itself. I hope that 
the reader will find some unity in the application of so many diverse fields of 
study to a single subject, for that is the nature of the study of physical science. In 
addition, I can only hope that some useful understanding relating to celestial 
mechanics will also be conveyed. In the unlikely event that some students will be 
called upon someday to determine the ephemeris of a comet or planet, I can only 
hope that they will at least know how to proceed. 
 
 As is generally the case with any book, many besides the author take part 
in generating the final product. Let me thank Peter Stoycheff and Jason 
Weisgerber for their professional rendering of my pathetic drawings and Ryland 
Truax for reading the manuscript. In addition, Jason Weisgerber carefully proof 
read the final copy of the manuscript finding numerous errors that evaded my 
impatient eyes. Special thanks are due Elizabeth Roemer of the Steward 
Observatory for carefully reading the manuscript and catching a large number of 
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embarrassing errors and generally improving the result. Those errors that remain 
are clearly my responsibility and I sincerely hope that they are not too numerous 
and distracting. 
 
 

George W. Collins, II  
June 24, 1988                    
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Preface to the WEB Edition 
 

 
 It is with some hesitation that I have proceeded to include this book with 
those I have previously put on the WEB for any who might wish to learn from 
them. However, recently a past student indicated that she still used this book in 
the classes she taught and thought it would be helpful to have it available. I was 
somewhat surprised as the reason de entra for the book in the first place was 
somewhat strained. Even in 1988 few taught celestial mechanics in the manner of 
the early 20th century before computers made the approach to the subject vastly 
different. However, the beauty of classical mechanics remains and it was for this 
that I wrote the book in the first place. The notions of Hamiltonians and 
Lagrangians are as vibrate and vital today as they were a century ago and anyone 
who aspires to a career in astronomy or physics should have been exposed to 
them. There are also similar historical items unique to astronomy to which an 
aspirant should be exposed. Astronomical coordinate systems and time should be 
items in any educated astronomer’s ‘book of knowledge’. While I realize that 
some of those items are dated, their existence and importance should still be 
known to the practicing astronomer.   
 
  I thought it would be a fairly simple matter to resurrect an old machine 
readable version and prepare it for the WEB. Sadly, it turned out that all 
machine-readable versions had disappeared so that it was necessary to scan a 
copy of the text and edit the result. This I have done in a manner that makes it 
closely resemble the original edition so as to make the index reasonably useful. 
The pagination error should be less than ± half a page. The re-editing of the 
version published by Pachart Publishing House has also afforded me the 
opportunity to correct a depressingly large number of typographical errors that 
existed in that effort. However, to think that I have found them all would be pure 
hubris. 
 
 The WEB manuscript was prepared using WORD 2000 and the PDF files 
generated using ACROBAT 6.0. However, I have found that the ACROBAT 5.0 
reader will properly render the files. In order to keep the symbol representation 
as close to the Pachart Publishing House edition as possible, I have found it 
necessary to use some fonts that may not be included in the reader’s version of 
WORD. Hence the translation of the PDF’s via ACROBAT may suffer. Those 
fonts are necessary for the correct representation of the Lagrangian in Chapter’s 
3 and 6 and well as the symbol for the argument of perihelion. The solar symbol 
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use as a subscript may also not be included in the reader’s fonts. These fonts are 
all True Type and in order are: 

Commercial Script 
WP Greek Helvetica 

WP Math A 
 
I believe that the balance of the fonts used is included in most operating systems 
supporting contemporary word processors. While this may inconvenience some 
readers, I hope that the reformatting and corrections have made this version more 
useful. 
  
 As with my other efforts, there is no charge for the use of this book, but it 
is hoped that anyone who finds the book useful would be honest with any 
attribution that they make.  
 
 Finally, I extend my thanks to Professor Andrjez Pacholczyk and Pachart 
Publishing House for allowing me to release this book on the WEB in spite of the 
hard copies of the original version that they still have available. Years ago before 
the internet made communication what it is today, Pacholczyk and Swihart 
established the Pachart Publishing House partly to make low-volume books such 
as graduate astronomy text books available to students. I believe this altruistic 
spirit is still manifest in their decision. I wish that other publishers would follow 
this example and make some of the out-of-print classics available on the internet.   
 
 

George W. Collins, II  
April 23, 2004       

 

 
 
 
 
 

xiii



© Copyright 2004 
 
 

1 
 
 

Introduction and Mathematics Review 
 
 

1.1 The Nature of Celestial Mechanics 
 
 Celestial mechanics has a long and venerable history as a discipline. It 
would be fair to say that it was the first area of physical science to emerge from 
Newton's theory of mechanics and gravitation put forth in the Principia. It was 
Newton's ability to describe accurately the motion of the planets under the 
concept of a single universal set of laws that led to his fame in the seventeenth 
century. The application of Newtonian mechanics to planetary motion was honed 
to so fine an edge during the next two centuries that by the advent of the twentieth 
century the description of planetary motion was refined enough that the departure 
of prediction from observation by 43 arcsec in the precession of the perihelion of 
Mercury's orbit was a major factor in the replacement of Newton's theory of 
gravity by the General Theory of Relativity.  
 
 At the turn of the century no professional astronomer would have been 
considered properly educated if he could not determine the location of a planet in 
the local sky given the orbital elements of that planet. The reverse would also 
have been expected. That is, given three or more positions of the planet in the sky 
for three different dates, he should be able to determine the orbital elements of 
that planet preferably in several ways. It is reasonably safe to say that few 
contemporary astronomers could accomplish this without considerable study. The 
emphasis of astronomy has shifted dramatically during the past fifty years. The 
techniques of classical celestial mechanics developed by Gauss, Lagrange, Euler 
and many others have more or less been consigned to the history books. Even in 
the situation where the orbits of spacecraft are required, the accuracy demanded is 
such that much more complicated mechanics is necessary than for planetary 
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motion, and these problems tend to be dealt with by techniques suited to modern 
computers. 
 
 However, the foundations of classical celestial mechanics contain 
elements of modern physics that should be understood by every physical scientist. 
It is the understanding of these elements that will form the primary aim of the 
book while their application to celestial mechanics will be incidental. A mastery 
of these fundamentals will enable the student to perform those tasks required of 
an astronomer at the turn of the century and also equip him to deal with more 
complicated problems in many other fields. 
 
 The traditional approach to celestial mechanics well into the twentieth 
century was incredibly narrow and encumbered with an unwieldy notation that 
tended to confound rather than elucidate. It wasn't until the 1950s that vector 
notation was even introduced into the subject at the textbook level. Since 
throughout this book we shall use the now familiar vector notation along with the 
broader view of classical mechanics and linear algebra, it is appropriate that we 
begin with a review of some of these concepts. 
 
1.2  Scalars, Vectors, Tensors, Matrices and Their Products 
 
 While most students of the physical sciences have encountered scalars and 
vectors throughout their college career, few have had much to do with tensors and 
fewer still have considered the relations between these concepts. Instead they are 
regarded as separate entities to be used under separate and specific conditions. 
Other students regard tensors as the unfathomable language of General Relativity 
and therefore comprehensible only to the intellectually elite. This latter situation 
is unfortunate since tensors are incredibly useful in the wide range of modern 
theoretical physics and the sooner one vanquishes his fear of them the better. 
Thus, while we won't make great use of them in this book, we will introduce them 
and describe their relationship to vectors and scalars. 
 

a. Scalars 
 

 The notion of a scalar is familiar to anyone who has completed a freshman 
course in physics. A single number or symbol is used to describe some physical 
quantity. In truth, as any mathematician will tell you, it is not necessary for the 
scalar to represent anything physical. But since this is a book about physical 
science we shall narrow our view to the physical world. There is, however, an 
area of mathematics that does provide a basis for defining scalars, vectors, etc. 
That area is set theory and its more specialized counterpart, group theory. For a 
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collection or set of objects to form a group there must be certain relations between 
the elements of the set. Specifically, there must be a "Law" which describes the 
result of "combining" two members of the set. Such a "Law" could be addition. 
Now if the action of the law upon any two members of the set produces a third 
member of the set, the set is said to be "closed" with respect to that law. If the set 
contains an element which, when combined under the law with any other member 
of the set, yields that member unchanged, that element is said to be the identity 
element. Finally, if the set contains elements which are inverses, so that the 
combination of a member of the set with its inverse under the "Law" yields the 
identity element, then the set is said to form a group under the "Law". 
 
 The integers (positive and negative, including zero) form a group under 
addition. In this instance, the identity element is zero and the operation that 
generates inverses is subtraction so that the negative integers represent the inverse 
elements of the positive integers. However, they do not form a group under 
multiplication as each inverse is a fraction. On the other hand the rational 
numbers do form a group under both addition and multiplication. Here the 
identity element for addition is again zero, but under multiplication it is one. The 
same is true for the real and complex numbers. Groups have certain nice 
properties; thus it is useful to know if the set of objects forms a group or not. 
Since scalars are generally used to represent real or complex numbers in the 
physical world, it is nice to know that they will form a group under multiplication 
and addition so that the inverse operations of subtraction and division are defined. 
With that notion alone one can develop all of algebra and calculus which are so 
useful in describing the physical world. However, the notion of a vector is also 
useful for describing the physical world and we shall now look at their relation to 
scalars. 
 
 
 b. Vectors 
 
 A vector has been defined as "an ordered n-tuple of numbers". Most find 
that this technically correct definition needs some explanation. There are some 
physical quantities that require more than a single number to fully describe them. 
Perhaps the most obvious is an object's location in space. Here we require three 
numbers to define its location (four if we include time). If we insist that the order 
of those three numbers be the same, then we can represent them by a single 
symbol called a vector. In general, vectors need not be limited to three numbers; 
one may use as many as is necessary to characterize the quantity. However, it 
would be useful if the vectors also formed a group and for this we need some 
"Laws" for which the group is closed. Again addition and multiplication seem to 

 
 
 
 
 

3



be the logical laws to impose. Certainly vector addition satisfies the group 
condition, namely that the application of the "law" produces an element of the set. 
The identity element is a 'zero-vector' whose components are all zero. However, 
the commonly defined "laws" of multiplication do not satisfy this condition. 
 
 Consider the vector scalar product, also known as the inner product, which 
is defined as 

∑==•
i

iiBAcBA
rr

    (1.2.1) 

Here the result is a scalar which is clearly a different type of quantity than a 
vector. Now consider the other well known 'vector product', sometimes called the 
cross product, which in ordinary Cartesian coordinates is defined as  
 

)BABA(k̂)BABA(ĵ)BABA(î

BBB

AAA
k̂ĵî

BA ijjiikkijkkj

kji

kji −+−−−==×
rr

.  (1.2.2) 

 
This appears to satisfy the condition that the result is a vector. However as we 
shall see, the vector produced by this operation does not behave in the way in 
which we would like all vectors to behave. 
 
 Finally, there is a product law known as the tensor, or outer product that is 
useful to define as 

⎪⎭

⎪
⎬
⎫

=
=

jiij BAC
,   BA C

rr

       (1.2.3) 

Here the result of applying the "law" is an ordered array of (n x m) numbers 
where n and m are the dimensionalities of the vectors A

r
and B

r
respectively. Such 

a result is clearly not a vector and so vectors under this law do not form a group. 
In order to provide a broader concept wherein we can understand scalars and 
vectors as well as the results of the outer product, let us briefly consider the 
quantities knows as tensors. 
 
 c. Tensors and Matrices 
 
 In general a tensor has components or elements. N is known as the 
dimensionality of the tensor by analogy with the notion of a vector while n is 
called the rank. Thus vectors are simply tensors of rank unity while scalars are 
tensors of rank zero. If we consider the set of all tensors, then they form a group 

nN
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under addition and all of the vector products. Indeed the inner product can be 
generalized for tensors of rank m and n. The result will be a tensor of rank 

nm − . Similarly the outer product can be so defined that the outer product of 

tensors with rank m and n is a tensor of rank nm + . 
 
 One obvious way of representing tensors of rank two is by denoting them 
as matrices. Thus the arranging of the components in an (N x N) array will 
produce the familiar square matrix. The scalar product of a matrix and vector 
should then yield a vector by 

2N

⎪⎭

⎪
⎬
⎫

=

=•

∑ jij
j

i BAC
,   CB

rr
A

      ,                                   (1.2.4) 

while the outer product would result in a tensor of rank three from 

⎪⎭

⎪
⎬
⎫

=
=

kijijk BAC
,   B CA

r

          .                               (1.2.5) 

 
An important tensor of rank two is called the unit tensor whose elements are the 
Kronecker delta and for two dimensions is written as 

ij10
01

δ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=1         .                                   (1.2.6) 

Clearly the scalar product of this tensor with a vector yields the vector itself. 
There is a parallel tensor of rank three known as the Levi-Civita tensor (or more 
correctly tensor density) which is a three index tensor whose elements are zero 
when any two indices are equal. When the indices are all different the value is +l 
or -1 depending on whether the index sequence can be obtained by an even or odd 
permutation of 1,2,3 respectively. Thus the elements of the Levi-Civita tensor can 
be written in terms of three matrices as  
 

⎪
⎭

⎪
⎬

⎫

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

+
=ε

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

−
=ε

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
+=ε

000
001
010

,
001
000
100

,
010
100
000

jk3jk2jk1   . (2.1.7) 

 
One of the utilities of this tensor is that it can be used to express the vector cross 
product as follows 

∑∑ =ε=•ε=×
j k

ikjijk CBA)BA(BA
rrrr

  .           (1.2.8)  

 
 
 
 
 

5



As we shall see later, while the rule for calculating the rank correctly implies that 
the vector cross product as expressed by equation (1.2.8) will yield a vector, there 
are reasons for distinguishing between this type of vector and the normal 
vectors . These same reasons extend to the correct naming of the Levi-
Civita tensor as the Levi-Civita tensor density. However, before this distinction 
can be made clear, we shall have to understand more about coordinate 
transformations and the behavior of both vectors and tensors that are subject to 
them. 

B and A
rr

 
 The normal matrix product is certainly different from the scalar or outer 
product and serves as an additional multiplication "law" for second rank tensors. 
The standard definition of the matrix product is 
 

                                                       .  (1.2.9) 
⎪⎭

⎪
⎬
⎫

=

=

∑
k

kjikij BAC
,CAB

 
Only if the matrices can be resolved into the outer product of two vectors so that 
 

⎭
⎬
⎫

β=

α=

b

a
rr

rr

B

A
 ,                           (1.2.10) 

 
can the matrix product be written in terms of the products that we have already 
defined -namely 

)(ba β•α=
rrrr

AB        .                               (1.2.11) 
 
 There is much more that can, and perhaps should, be said about matrices. 
Indeed, entire books have been written about their properties. However, we shall 
consider only some of those properties within the notion of a group. Clearly the 
unit tensor (or unit matrix) given by equation (1.2.6) represents the unit element 
of the matrix group under matrix multiplication. The unit under addition is simply 
a matrix whose elements are all zero, since matrix addition is defined by 
 

⎪
⎭

⎪
⎬

⎫

=+

=+

ijijij CBA

CBA
       .                         (1.2.12) 
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Remember that the unit element of any group forms the definition of the inverse 
element. Clearly the inverse of a matrix under addition will simply be that matrix 
whose elements are the negative of the original matrix, so that their sum is zero. 
However, the inverse of a matrix under matrix multiplication is quite another 
matter. We can certainly define the process by 
 

1AA 1 =−     ,                                     (1.2.13) 
 
but the process by which  is actually computed is lengthy and beyond the 
scope of this book. We can further define other properties of a matrix such as the 
transpose and the determinant. The transpose of a matrix A with elements Aij is 
just 

1A−

ijA=TA  ,                        (1.2.14) 
 
while the determinant is obtained by expanding the matrix by minors as is done in 
Kramer's rule for the solution of linear algebraic equations. For a (3 x 3) matrix, 
this would become  
 

)aaaa(a                                         
)aaaa(a                                         

)aaaa(a
aaa
aaa
aaa

detdet

3122322113

3123332112

3223332211

332313

232221

131211

−+
−−

−+==A

 .      (1.2.15) 

 
The matrix is said to be symmetric if jiij AA = . Finally, if the matrix elements are 
complex so that the transpose element is the complex conjugate of its counterpart, 
the matrix is said to be Hermitian. Thus for a Hermitian matrix H the elements 
obey 

jiij H~H =    ,                       (1.2.16) 
 
where jiH~ is the complex conjugate of   ijH  .
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1.3  Commutativity, Associativity, and Distributivity 
 
 Any "law" that is defined on the elements of a set may have certain 
properties that are important for the implementation of that "law" and the resultant 
elements. For the sake of generality, let us denote the "law" by ^, which can stand 
for any of the products that we have defined. Now any such law is said to be 
commutative if 

A^BB^A =         .                                (1.3.1) 
 
Of all the laws we have discussed only addition and the scalar product are 
commutative. This means that considerable care must be observed when using the 
outer, vector-cross, or matrix products, as the order in which terms appear in a 
product will make a difference in the result. 
 
 Associativity is a somewhat weaker condition and is said to hold for any 
law when 

)C^B(^AC)^B^A( =      .                            (1.3.2) 
 
In other words the order in which the law is applied to a string of elements doesn't 
matter if the law is associative. Here addition, the scalar, and matrix products are 
associative while the vector cross product and outer product are, in general, not. 
Finally, the notion of distributivity involves the relation between two different 
laws. These are usually addition and one of the products. Our general purpose law 
^ is said to be distributive with respect to addition if 
 

)C^A()B^A()CB(^A +=+ .                            (1.3.3) 
 
This is usually the weakest of all conditions on a law and here all of the products 
we have defined pass the test. They are all distributive with respect to addition. 
The main function of remembering the properties of these various products is to 
insure that mathematical manipulations on expressions involving them are done 
correctly. 
 
1.4 Operators 
 
 The notion of operators is extremely important in mathematical physics 
and there are entire books written on the subject. Most students usually first 
encounter operators in calculus when the notation [d/dx] is introduced to denote 
the derivative of a function. In this instance the operator stands for taking the limit 
of the difference between adjacent values of some function of x divided by the 
difference between the adjacent values of  x  as that difference tends toward zero. 
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This is a fairly complicated set of instructions represented by a relatively simple 
set of symbols. The designation of some symbol to represent a collection of 
operations is said to represent the definition of an operator. Depending on the 
details of the definition, the operators can often be treated as if they were 
quantities and subjected to algebraic manipulations. The extent to which this is 
possible is determined by how well the operators satisfy the conditions for the 
group on which the algebra or mathematical system in question is defined. 
 
 We shall make use of a number of operators in this book, the most 
common of which is the "del" operator or "nabla". It is usually denoted by the 
symbol ∇ and is a vector operator defined in Cartesian coordinates as 
 

z
k̂

y
ĵ

x
î

∂
∂

+
∂
∂

+
∂
∂

≡∇    .                              (1.4.1) 

 

 
Figure 1.1 schematically shows the divergence of a vector field. In the 
region where the arrows of the vector field converge, the divergence is 
positive, implying an increase in the source of the vector field. The 
opposite is true for the region where the field vectors diverge. 

 
This single operator, when combined with the some of the products defined 
above, constitutes the foundation of vector calculus. Thus the divergence, 
gradient, and curl are defined as 
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⎪
⎪
⎭

⎪⎪
⎬

⎫

=×∇

=α∇

β=•∇

CA

B

A

rr

r

r

                                          (1.4.2) 

respectively. If we consider A
r

 to be a continuous vector function of the 
independent variables that make up the space in which it is defined, then we may 
give a physical interpretation for both the divergence and curl. The divergence of 
a vector field is a measure of the amount that the field spreads or contracts at 
some given point in the space (see Figure 1.1). 

 
Figure 1.2 schematically shows the curl of a vector field. The direction of 
the curl is determined by the "right hand rule" while the magnitude 
depends on the rate of change of the x- and y-components of the vector 
field with respect to y and x. 
 

 The curl is somewhat harder to visualize. In some sense it represents the 
amount that the field rotates about a given point. Some have called it a measure of 
the "swirliness" of the field. If in the vicinity of some point in the field, the 
vectors tend to veer to the left rather than to the right, then the curl will be a 
vector pointing up normal to the net rotation with a magnitude that measures the 
degree of rotation (see Figure 1.2). Finally, the gradient of a scalar field is simply 
a measure of the direction and magnitude of the maximum rate of change of that 
scalar field (see Figure 1.3). 
 
 With these simple pictures in mind it is possible to generalize the notion of 
the Del-operator to other quantities. Consider the gradient of a vector field. This 
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represents the outer product of the Del-operator with a vector. While one doesn't 
see such a thing often in freshman physics, it does occur in more advanced 
descriptions of fluid mechanics (and many other places). We now know enough to 
understand that the result of this operation will be a tensor of rank two which we 
can represent as a matrix.  
 

 
        Figure 1.3 schematically shows the gradient of the scalar dot-density in 

the form of a number of vectors at randomly chosen points in the scalar 
field. The direction of the gradient points in the direction of maximum 
increase of the dot-density, while the magnitude of the vector indicates 
the rate of change of that density. 

 
What do the components mean? Generalize from the scalar case. The nine 

elements of the vector gradient can be viewed as three vectors denoting the 
direction of the maximum rate of change of each of the components of the 
original vector. The nine elements represent a perfectly well defined quantity and 
it has a useful purpose in describing many physical situations. One can also 
consider the divergence of a second rank tensor, which is clearly a vector. In 
hydrodynamics, the divergence of the pressure tensor may reduce to the gradient 
of the scalar gas pressure if the macroscopic flow of the material is small 
compared to the internal speed of the particles that make up the material.  
 
 Thus by combining the various products defined in this chapter with the 
familiar notions of vector calculus, we can formulate a much richer description of 
the physical world. This review of scalar and vector mathematics along with the 
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all-too-brief introduction to tensors and matrices will be useful, not only in the 
development of celestial mechanics, but in the general description of the physical 
world. However, there is another broad area of mathematics on which we must 
spend some time. To describe events in the physical world, it is common to frame 
them within some system of coordinates. We will now consider some of these 
coordinates and the transformations between them. 
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Common Del-Operators 

 
Cylindrical   Coordinates 

 
Orthogonal Line Elements 
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Components of the Gradient 
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Spherical   Coordinates 
 
Orthogonal Line Elements 
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 Chapter 1: Exercises 
 

1. Find the components of the vector )B(A
rr

×∇×∇= in spherical coordinates. 
 
2. Show that: 
 a.   )B(AB)A()A(BA)B()BA(

rrrrrrrrrr
•∇+∇•−•∇−∇•=××∇   . 

 
       b.   )B(A)A(B)BA(

rrrrrr
×∇•−×∇•=×•∇    . 

    
3. Show that: 
 )B(A)A(BB)A(A)B()BA(

rrrrrrrrrr
×∇×+×∇×+∇•+∇•=•∇   . 

 
4. If T is a tensor of rank 2 with components Ti j , show that   is a vector 

and find the components of that vector. 
T•∇

 
Useful Vector Identities 

 
aAAa)Aa( ∇•+•∇=•∇

rrr
  .                                    (a1) 
aA)A(a)Aa( ∇×+×∇=×∇

rrr
.                                    (a2) 

)A()A()A(
rrr

∇•∇−•∇∇=×∇×∇                                 (a3) 
)B(AB)A()A(BA)B()BA(
rrrrrrrrrr

•∇+∇•−•∇−∇•=××∇        .    (a4) 
)B(A)A(B)BA(
rrrrrr

×∇•−×∇•=×•∇    .                         (a5) 
)B(A)A(BB)A(A)B()BA(
rrrrrrrrrr

×∇×+×∇×+∇•+∇•=•∇             (a6) 

a ofLaplacian  a)a( 2 =∇≡∇•∇   .                                (a7) 
     
In Cartesian coordinates: 
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2 
 

Coordinate Systems 
and  

Coordinate Transformations 
 
 
 The field of mathematics known as topology describes space in a very 
general sort of way. Many spaces are exotic and have no counterpart in the 
physical world. Indeed, in the hierarchy of spaces defined within topology, those 
that can be described by a coordinate system are among the more sophisticated. 
These are the spaces of interest to the physical scientist because they are 
reminiscent of the physical space in which we exist. The utility of such spaces is 
derived from the presence of a coordinate system which allows one to describe 
phenomena that take place within the space. However, the spaces of interest need 
not simply be the physical space of the real world. One can imagine the 
temperature-pressure-density space of thermodynamics or many of the other 
spaces where the dimensions are physical variables. One of the most important of 
these spaces for mechanics is phase space. This is a multi-dimensional space that 
contains the position and momentum coordinates for a collection of particles. 
Thus physical spaces can have many forms. However, they all have one thing in 
common. They are described by some coordinate system or frame of reference. 
Imagine a set of rigid rods or vectors all connected at a point. Such a set of 'rods' 
is called a frame of reference. If every point in the space can uniquely be 
projected onto the rods so that a unique collection of rod-points identify the point 
in space, the reference frame is said to span the space. 
 



 
 
2.1  Orthogonal Coordinate Systems 
 
 If the vectors that define the coordinate frame are locally perpendicular, 
the coordinate frame is said to be orthogonal. Imagine a set of unit basis vectors 

that span some space. We can express the condition of orthogonality by  iê
 

ijji êê δ=•   ,                                                (2.1.1) 
 
where  is the Kronecker delta that we introduced in the previous chapter. Such 
a set of basis vectors is said to be orthogonal and will span a space of n-
dimensions where n is the number of vectors . It is worth noting that the space 
need not be Euclidean. However, if the space is Euclidean and the coordinate 
frame is orthogonal, then the coordinate frame is said to be a Cartesian frame. The 
standard xyz coordinate frame is a Cartesian frame. One can imagine such a 
coordinate frame drawn on a rubber sheet. If the sheet is distorted in such a 
manner that the local orthogonality conditions are still met, the coordinate frame 
may remain orthogonal but the space may no longer be a Euclidean space. For 
example, consider the ordinary coordinates of latitude and longitude on the 
surface of the earth. These coordinates are indeed orthogonal but the surface is not 
the Euclidean plane and the coordinates are not Cartesian. 

ijδ

iê

 
 Of the orthogonal coordinate systems, there are several that are in 
common use for the description of the physical world. Certainly the most 
common is the Cartesian or rectangular coordinate system (xyz). Probably the 
second most common and of paramount importance for astronomy is the system 
of spherical or polar coordinates (r,θ,φ). Less common but still very important are 
the cylindrical coordinates (r,ϑ ,z). There are a total of thirteen orthogonal 
coordinate systems in which Laplace’s equation is separable, and knowledge of 
their existence (see Morse and Feshbackl) can be useful for solving problems in 
potential theory. Recently the dynamics of ellipsoidal galaxies has been 
understood in a semi-analytic manner by employing ellipsoidal coordinates and 
some potentials defined therein. While these more exotic coordinates were largely 
concerns of the nineteenth century mathematical physicists, they still have 
relevance today. Often the most important part of solving a problem in 
mathematical physics is the choice of the proper coordinate system in which to do 
the analysis. 
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 In order to completely define any coordinate system one must do more 
than just specify the space and coordinate geometry. In addition, the origin of the 
coordinate system and its orientation must be given. In celestial mechanics there 
are three important locations for the origin. For observation, the origin can be 
taken to be the observer (topocentric coordinates). However for interpretation of 
the observations it is usually necessary to refer the observations to coordinate 
systems with their origin at the center of the earth (geocentric coordinates) or the 
center of the sun (heliocentric coordinates) or at the center of mass of the solar 
system (barycentric coordinates). The orientation is only important when the 
coordinate frame is to be compared or transformed to another coordinate frame. 
This is usually done by defining the zero-point of some coordinate with respect to 
the coordinates of the other frame as well as specifying the relative orientation. 
 
2.2  Astronomical Coordinate Systems 
 
 The coordinate systems of astronomical importance are nearly all 
spherical coordinate systems. The obvious reason for this is that most all 
astronomical objects are remote from the earth and so appear to move on the 
backdrop of the celestial sphere. While one may still use a spherical coordinate 
system for nearby objects, it may be necessary to choose the origin to be the 
observer to avoid problems with parallax. These orthogonal coordinate frames 
will differ only in the location of the origin and their relative orientation to one 
another. Since they have their foundation in observations made from the earth, 
their relative orientation is related to the orientation of the earth's rotation axis 
with respect to the stars and the sun. The most important of these coordinate 
systems is the Right Ascension -Declination coordinate system. 
  
 a.  The Right Ascension - Declination Coordinate System 
 
 This coordinate system is a spherical-polar coordinate system where the 
polar angle, instead of being measured from the axis of the coordinate system, is 
measured from the system's equatorial plane. Thus the declination is the angular 
complement of the polar angle. Simply put, it is the angular distance to the 
astronomical object measured north or south from the equator of the earth as 
projected out onto the celestial sphere. For measurements of distant objects made 
from the earth, the origin of the coordinate system can be taken to be at the center 
of the earth. At least the 'azimuthal' angle of the coordinate system is measured in 
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the proper fashion. That is, if one points the thumb of his right hand toward the 
North Pole, then the fingers will point in the direction of increasing Right 
Ascension. Some remember it by noting that the Right Ascension of rising or 
ascending stars increases with time. There is a tendency for some to face south 
and think that the angle should increase to their right as if they were looking at a 
map. This is exactly the reverse of the true situation and the notion so confused air 
force navigators during the Second World War that the complementary angle, 
known as the sidereal hour angle, was invented. This angular coordinate is just 24 
hours minus the Right Ascension. 
 
 Another aspect of this Right Ascension that many find confusing is that it 
is not measured in any common angular measure like degrees or radians. Rather it 
is measured in hours, minutes, and seconds of time. However, these units are the 
natural ones as the rotation of the earth on its axis causes any fixed point in the 
sky to return to the same place after about 24 hours. We still have to define the 
zero-point from which the Right Ascension angle is measured. This also is 
inspired by the orientation of the earth. The projection of the orbital plane of the 
earth on the celestial sphere is described by the path taken by the sun during the 
year. This path is called the ecliptic. Since the rotation axis of the earth is inclined 
to the orbital plane, the ecliptic and equator, represented by great circles on the 
celestial sphere, cross at two points 180° apart. The points are known as 
equinoxes, for when the sun is at them it will lie in the plane of the equator of the 
earth and the length of night and day will be equal. The sun will visit each once a 
year, one when it is headed north along the ecliptic and the other when it is 
headed south. The former is called the vernal equinox as it marks the beginning of 
spring in the northern hemisphere while the latter is called the autumnal equinox. 
The point in the sky known as the vernal equinox is the zero-point of the Right 
Ascension coordinate, and the Right Ascension of an astronomical object is 
measured eastward from that point in hours, minutes, and seconds of time. 
 
 While the origin of the coordinate system can be taken to be the center of 
the earth, it might also be taken to be the center of the sun. Here the coordinate 
system can be imagined as simply being shifted without changing its orientation 
until its origin corresponds with the center of the sun. Such a coordinate system is 
useful in the studies of stellar kinematics. For some studies in stellar dynamics, it 
is necessary to refer to a coordinate system with an origin at the center of mass of 
the earth-moon system. These are known as barycentric coordinates. Indeed, since 
the term barycenter refers to the center of mass, the term barycentric coordinates 
may also be used to refer to a coordinate system whose origin is at the center of 
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mass of the solar system. The domination of the sun over the solar system insures 
that this origin will be very near, but not the same as the origin of the heliocentric 
coordinate system. Small as the differences of origin between the heliocentric and 
barycentric coordinates is, it is large enough to be significant for some problems 
such as the timing of pulsars. 
 
 b.  Ecliptic Coordinates 
 
 The ecliptic coordinate system is used largely for studies involving planets 
and asteroids as their motion, with some notable exceptions, is confined to the 
zodiac. Conceptually it is very similar to the Right Ascension-Declination 
coordinate system. The defining plane is the ecliptic instead of the equator and the 
"azimuthal" coordinate is measured in the same direction as Right Ascension, but 
is usually measured in degrees. The polar and azimuthal angles carry the 
somewhat unfortunate names of celestial latitude and celestial longitude 
respectively in spite of the fact that these names would be more appropriate for 
Declination and Right Ascension. Again these coordinates may exist in the 
topocentric, geocentric, heliocentric, or barycentric forms. 
 
 c.  Alt-Azimuth Coordinate System 
 
 The Altitude-Azimuth coordinate system is the most familiar to the 
general public. The origin of this coordinate system is the observer and it is rarely 
shifted to any other point. The fundamental plane of the system contains the 
observer and the horizon. While the horizon is an intuitively obvious concept, a 
rigorous definition is needed as the apparent horizon is rarely coincident with the 
location of the true horizon. To define it, one must first define the zenith. This is 
the point directly over the observer's head, but is more carefully defined as the 
extension of the local gravity vector outward through the celestial sphere. This 
point is known as the astronomical zenith. Except for the oblatness of the earth, 
this zenith is usually close to the extension of the local radius vector from the 
center of the earth through the observer to the celestial sphere. The presence of 
large masses nearby (such as a mountain) could cause the local gravity vector to 
depart even further from the local radius vector. The horizon is then that line on 
the celestial sphere which is everywhere 90° from the zenith. The altitude of an 
object is the angular distance of an object above or below the horizon measured 
along a great circle passing through the object and the zenith. The azimuthal angle 
of this coordinate system is then just the azimuth of the object. The only problem 
here arises from the location of the zero point. Many older books on astronomy 
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will tell you that the azimuth is measured westward from the south point of the 
horizon. However, only astronomers did this and most of them don't anymore. 
Surveyors, pilots and navigators, and virtually anyone concerned with local 
coordinate systems measures the azimuth from the north point of the horizon 
increasing through the east point around to the west. That is the position that I 
take throughout this book. Thus the azimuth of the cardinal points of the compass 
are: N(0°), E(90°), S(180°), W(270°). 
 
2.3 Geographic Coordinate Systems 
 
 Before leaving the subject of specialized coordinate systems, we should 
say something about the coordinate systems that measure the surface of the earth. 
To an excellent approximation the shape of the earth is that of an oblate spheroid. 
This can cause some problems with the meaning of local vertical. 
 
 a.  The Astronomical Coordinate System 
 
 The traditional coordinate system for locating positions on the surface of 
the earth is the latitude-longitude coordinate system. Most everyone has a feeling 
for this system as the latitude is simply the angular distance north or south of the 
equator measured along the local meridian toward the pole while the longitude is 
the angular distance measured along the equator to the local meridian from some 
reference meridian. This reference meridian has historically be taken to be that 
through a specific instrument (the Airy transit) located in Greenwich England. By 
a convention recently adopted by the International Astronomical Union, 
longitudes measured east of Greenwich are considered to be positive and those 
measured to the west are considered to be negative. Such coordinates provide a 
proper understanding for a perfectly spherical earth. But for an earth that is not 
exactly spherical, more care needs to be taken. 
 
 b. The Geodetic Coordinate System 
 
 In an attempt to allow for a non-spherical earth, a coordinate system has 
been devised that approximates the shape of the earth by an oblate spheroid. Such 
a figure can be generated by rotating an ellipse about its minor axis, which then 
forms the axis of the coordinate system. The plane swept out by the major axis of 
the ellipse is then its equator. This approximation to the actual shape of the earth 
is really quite good. The geodetic latitude is now given by the angle between the 
local vertical and the plane of the equator where the local vertical is the normal to 



the oblate spheroid at the point in question. The geodetic longitude is roughly the 
same as in the astronomical coordinate system and is the angle between the local 
meridian and the meridian at Greenwich. The difference between the local vertical 
(i.e. the normal to the local surface) and the astronomical vertical (defined by the 
local gravity vector) is known as the "deflection of the vertical" and is usually less 
than 20 arc-sec. The oblatness of the earth allows for the introduction of a third 
coordinate system sometimes called the geocentric coordinate system. 
 
 c. The Geocentric Coordinate System 
 
 Consider the oblate spheroid that best fits the actual figure of the earth. 
Now consider a radius vector from the center to an arbitrary point on the surface 
of that spheroid. In general, that radius vector will not be normal to the surface of 
the oblate spheroid (except at the poles and the equator) so that it will define a 
different local vertical. This in turn can be used to define a different latitude from 
either the astronomical or geodetic latitude. For the earth, the maximum 
difference between the geocentric and geodetic latitudes occurs at about 45° 
latitude and amounts to about (11' 33"). While this may not seem like much, it 
amounts to about eleven and a half nautical miles (13.3 miles or 21.4 km.) on the 
surface of the earth. Thus, if you really want to know where you are you must be 
careful which coordinate system you are using. Again the geocentric longitude is 
defined in the same manner as the geodetic longitude, namely it is the angle 
between the local meridian and the meridian at Greenwich. 
 
2.4  Coordinate Transformations 
 
 A great deal of the practical side of celestial mechanics involves 
transforming observational quantities from one coordinate system to another. 
Thus it is appropriate that we discuss the manner in which this is done in general 
to find the rules that apply to the problems we will encounter in celestial 
mechanics. While within the framework of mathematics it is possible to define 
myriads of coordinate transformations, we shall concern ourselves with a special 
subset called linear transformations. Such coordinate transformations relate the 
coordinates in one frame to those in a second frame by means of a system of 
linear algebraic equations. Thus if a vector X

r
 in one coordinate system has 

components Xj, in a primed-coordinate system a vector 'X
r

 to the same point will 
have components Xj given by  

i
j

jij
'
i BXAX += ∑   .                                        (2.4.1) 
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In vector notation we could write this as  
BXX' rrr

+= A   .                                             (2.4.2) 
 
 This defines the general class of linear transformation where A is some 
matrix and B

r
is a vector. This general linear form may be divided into two 

constituents, the matrix A and the vector B
r

. It is clear that the vector B
r

 may be 
interpreted as a shift in the origin of the coordinate system, while the elements Aij 
are the cosines of the angles between the axes Xi and Xj and are called the 
directions cosines (see Figure 2.1). Indeed, the vector B

r
 is nothing more than a 

vector from the origin of the un-primed coordinate frame to the origin of the 
primed coordinate frame. Now if we consider two points that are fixed in space 
and a vector connecting them, then the length and orientation of that vector will 
be independent of the origin of the coordinate frame in which the measurements 
are made. That places an additional constraint on the types of linear 
transformations that we may consider. For instance, transformations that scaled 
each coordinate by a constant amount, while linear, would change the length of 
the vector as measured in the two coordinate systems. Since we are only using the 
coordinate system as a convenient way to describe the vector, its length must be 
independent of the coordinate system. Thus we shall restrict our investigations of 
linear transformations to those that transform orthogonal coordinate systems 
while preserving the length of the vector. 
 
 Thus the matrix A must satisfy the following condition 

XX)X()X(XX '' rrrrrr
•=•=• AA   ,                           (2.4.3) 

which in component form becomes 

∑ ∑∑ ∑ ∑∑ ∑ ==
k j k i

2
ikjikijkik

i j
jij XXX)AA()XA()XA(

i
  .      (2.4.4) 

This must be true for all vectors in the coordinate system so that 

∑ ∑ −=δ=
i i

ik
1

jijkikij AAAA   .                            (2.4.5) 

Now remember that the Kronecker delta ijδ is the unit matrix and any element of 
a group that multiplies another and produces that group's unit element is defined 
as the inverse of that element. Therefore 

[ ] 1
ijji AA −=   .                                      (2.4.6) 
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Interchanging the elements of a matrix produces a new matrix which we have 
called the transpose of the matrix. Thus orthogonal transformations that preserve 
the length of vectors have inverses that are simply the transpose of the original 
matrix so that 

T1 AA =−   .                                           (2.4.7) 
 

 
 
 Figure 2.1 shows two coordinate frames related by the 

transformation angles . Four coordinates are necessary if the 
frames are not orthogonal. 

ijϕ

 
This means that given that transformation A in the linear system of equations 
(2.4.2), we may invert the transformation, or solve the linear equations, by 
multiplying those equations by the transpose of the original matrix or  

BXX ' rrr TT AA −=   .                                  (2.4.8) 
 
Such transformations are called orthogonal unitary transformations, or 
orthonormal transformations, and the result given in equation (2.4.8) greatly 
simplifies the process of carrying out a transformation from one coordinate 
system to another and back again. 
 
 We can further divide orthonormal transformations into two categories. 
These are most easily described by visualizing the relative orientation between the 

 
 
 
 
 
 
 

23



two coordinate systems. Consider a transformation that carries one coordinate into 
the negative of its counterpart in the new coordinate system while leaving the 
others unchanged. If the changed coordinate is, say, the x-coordinate, the 
transformation matrix would be 

 

       ,                                             (2.4.9) 
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which is equivalent to viewing the first coordinate system in a mirror. Such 
transformations are known as reflection transformations and will take a right 
handed coordinate system into a left handed coordinate system. The length of any 
vectors will remain unchanged. The x-component of these vectors will simply be 
replaced by its negative in the new coordinate system. However, this will not be 
true of "vectors" that result from the vector cross product. The values of the 
components of such a vector will remain unchanged implying that a reflection 
transformation of such a vector will result in the orientation of that vector being 
changed. If you will, this is the origin of the "right hand rule" for vector cross 
products. A left hand rule results in a vector pointing in the opposite direction. 
Thus such vectors are not invariant to reflection transformations because their 
orientation changes and this is the reason for putting them in a separate class, 
namely the axial (pseudo) vectors. Since the Levi-Civita tensor generates the 
vector cross product from the elements of ordinary (polar) vectors, it must share 
this strange transformation property. Tensors that share this transformation 
property are, in general, known as tensor densities or pseudo-tensors. Therefore 
we should call defined in equation (1.2.7) the Levi-Civita tensor density.   ijkε
  
 Indeed, it is the invariance of tensors, vectors, and scalars to orthonormal 
transformations that is most correctly used to define the elements of the group 
called tensors. Finally, it is worth noting that an orthonormal reflection 
transformation will have a determinant of -1. The unitary magnitude of the 
determinant is a result of the magnitude of the vector being unchanged by the 
transformation, while the sign shows that some combination of coordinates has 
undergone a reflection. 
 

As one might expect, the elements of the second class of orthonormal 
transformations have determinants of +1. These represent transformations that can 
be viewed as a rotation of the coordinate system about some axis. Consider a 
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transformation between the two coordinate systems displayed in Figure 2.1. The 
components of any vector C

r
in the primed coordinate system will be given by 
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     .                      (2.4.10) 

 
If we require the transformation to be orthonormal, then the direction cosines of 
the transformation will not be linearly independent since the angles between the 
axes must be π/2 in both coordinate systems. Thus the angles must be related by 
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Using the addition identities for trigonometric functions, equation (2.4.10) can be 
given in terms of the single angle φ by 
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This transformation can be viewed simple rotation of the coordinate system about 
the Z-axis through an angle φ. Thus, as a  
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    .             (2.4.13) 

 
 In general, the rotation of any Cartesian coordinate system about one of its 
principal axes can be written in terms of a matrix whose elements can be 
expressed in terms of the rotation angle. Since these transformations are about one 
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of the coordinate axes, the components along that axis remain unchanged. The 
rotation matrices for each of the three axes are  
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       .                   (2.4.14) 

 
It is relatively easy to remember the form of these matrices for the row and 
column of the matrix corresponding to the rotation axis always contains the 
elements of the unit matrix since that component are not affected by the 
transformation. The diagonal elements always contain the cosine of the rotation 
angle while the remaining off diagonal elements always contains the sine of the 
angle modulo a sign. For rotations about the X- or Z-axes, the sign of the upper 
right off diagonal element is positive and the other negative. The situation is just 
reversed for rotations about the Y-axis. So important are these rotation matrices 
that it is worth remembering their form so that they need not be re-derived every 
time they are needed. 
 
 One can show that it is possible to get from any given orthogonal 
coordinate system to another through a series of three successive coordinate 
rotations. Thus a general orthonormal transformation can always be written as the 
product of three coordinate rotations about the orthogonal axes of the coordinate 
systems. It is important to remember that the matrix product is not commutative 
so that the order of the rotations is important. So important is this result, that the 
angles used for such a series of transformations have a specific name. 
 
 

 
 
 
 
 
 
 

26
 



2.5  The Eulerian Angles  
 
 Leonard Euler proved that the general motion of a rigid body when one 
point is held fixed corresponds to a series of three rotations about three orthogonal 
coordinate axes. Unfortunately the definition of the Eulerian angles in the 
literature is not always the same (see Goldstein2 p.108). We shall use the 
definitions of Goldstein and generally follow them throughout this book. The 
order of the rotations is as follows. One begins with a rotation about the Z-axis. 
This is followed by a rotation about the new X-axis. This, in turn, is followed by a 
rotation about the resulting Z"-axis. The three successive rotation angles 
are .],,[ ψθφ

 
 Figure 2.2 shows the three successive rotational transformations 

corresponding to the three Euler Angles ),,( ψθφ  transformation 
from one orthogonal coordinate frame to another that bears an 
arbitrary orientation with respect to the first. 
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This series of rotations is shown in Figure 2.2. Each of these rotational 
transformations is represented by a transformation matrix of the type given in 
equation (2.4.14) so that the complete set of Eulerian transformation matrices is 
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    ,                              (2.5.1) 

 
and the complete single matrix that describes these transformations is 

)()()(),,( z'x"z φθψ=ψθφ PPPA   .                                (2.5.2) 
 
Thus the components of any vector X

r
 can be found in any other coordinate 

system as the components of 'X
r

 from 
X'X
rr

A=   .                                           (2.5.3) 
 
Since the inverse of orthonormal transformations has such a simple form, the 
inverse of the operation can easily be found from 
 

'X)]()()(['X'XX "z'xz
rrrr

ψθφ=== − TTTT1 PPPAA   .             (2.5.4) 
 
2.6  The Astronomical Triangle 
 
 The rotational transformations described in the previous section enable 
simple and speedy representations of the vector components of one Cartesian 
system in terms of those of another. However, most of the astronomical 

 
 
 
 
 
 
 

28



 
 
 
 
 
 
 

29

coordinate systems are spherical coordinate systems where the coordinates are 
measured in arc lengths and angles. The transformation from one of these 
coordinate frames to another is less obvious. One of the classical problems in 
astronomy is relating the defining coordinates of some point in the sky (say 
representing a star or planet), to the local coordinates of the observer at any given 
time. This is usually accomplished by means of the Astronomical Triangle which 
relates one system of coordinates to the other through the use of a spherical 
triangle. The solution of that triangle is usually quoted ex cathedra as resulting 
from spherical trigonometry. Instead of this approach, we shall show how the 
result (and many additional results) may be generated from the rotational 
transformations that have just been described. 
  
 Since the celestial sphere rotates about the north celestial pole due to the 
rotation of the earth, a great circle through the north celestial pole and the object 
(a meridian) appears to move across the sky with the object. That meridian will 
make some angle at the pole with the observer’s local prime meridian (i.e. the 
great circle through the north celestial pole and the observer's zenith). This angle 
is known as the local hour angle and may be calculated knowing the object's right 
ascension and the sidereal time. This latter quantity is obtained from the local 
time (including date) and the observer's longitude. Thus, given the local time, the 
observer's location on the surface of the earth (i.e. the latitude and longitude), and 
the coordinates of the object (i.e. its Right Ascension and declination), two sides 
and an included angle of the spherical triangle shown in Figure 2.3 may be 
considered known. The problem then becomes finding the remaining two angles 
and the included side. This will yield the local azimuth A, the zenith distance z 
which is the complement of the altitude, and a quantity known as the parallactic 
angle η. While this latter quantity is not necessary for locating the object 
approximately in the sky, it is useful for correcting for atmospheric refraction 
which will cause the image to be slightly displaced along the vertical circle from 
its true location. This will then enter into the correction for atmospheric extinction 
and is therefore useful for photometry.  
 
 In order to solve this problem, we will solve a separate problem. Consider 
a Cartesian coordinate system with a z-axis pointing along the radius vector from 
the origin of both astronomical coordinate systems (i.e. equatorial and alt-
azimuth) to the point Q. Let the y-axis lie in the meridian plane containing Q and 
be pointed toward the north celestial pole. The x-axis will then simply be 
orthogonal to the y- and z-axes. Now consider the components of any vector in 
this coordinate system. By means of rotational transformations we may calculate 



the components of that vector in any other coordinate frame. Therefore consider a 
series of rotational transformations that would carry us through the sides and 
angles of the astronomical triangle so that we return to exactly the initial xyz 
coordinate system. Since the series of transformations that accomplish this must 
exactly reproduce the components of the initial arbitrary vector, the 
transformation matrix must be the unit matrix with elements δij. If we proceed 
from point Q to the north celestial pole and then on to the zenith, the rotational 
transformations will involve only quantities related to the given part of our 
problem [i.e.  (π/2-δ), h, (π/2-φ)] .Completing the trip from the zenith to Q will 
involve the three local quantities [i.e. A, (π/2-H), η] . The total transformation 
matrix will then involve six rotational matrices, the first three of which involve 
given angles and the last three of which involve unknowns and it is this total 
matrix which is equal to the unit matrix. Since all of the transformation matrices 
represent orthonormal transformations, their inverse is simply their transpose. 
Thus we can generate a matrix equation, one side of which involves matrices of 
known quantities and the other side of which contains matrices of the unknown 
quantities. 
 
 Let us now follow this program and see where it leads. The first rotation 
of our initial coordinate system will be through the angle [-(π/2 - δ)]. This will 
carry us through the complement of the declination and align the z-axis with the 
rotation axis of the earth. Since the rotation will be about the x-axis, the 
appropriate rotation matrix from equation (2.4.14) will be 
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Now rotate about the new z-axis that is aligned with the polar axis through a 
counterclockwise or positive rotation of (h) so that the new y-axis lies in the local 
prime meridian plane pointing away from the zenith. The rotation matrix for this 
transformation involves the hour angle so that 
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Continue the trip by rotating through [ +(π/2 - φ)] so that the z-axis of the 
coordinate system aligns with a radius vector through the zenith. This will require 
a positive rotation about the x-axis so that the appropriate transformation matrix is 
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 Figure 2.3 shows the Astronomical Triangle with the zenith in the 

Z-direction. The solution of this triangle is necessary for 
transformations between the Alt-Azimuth coordinate system and 
the Right Ascension-Declination coordinate system. The latter 
coordinates are found from the hour angle h and the distance from 
the North Celestial Pole. 

 
Now rotate about the z-axis through the azimuth [2π-A] so that the y-axis will 
now be directed toward the point in question Q. This is another z-rotation so that 
the appropriate transformation matrix is 

 
 
 
 
 
 
 

31



⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=−π

100
0AcosAsin
0AsinAcos

]A2[zP   .                              (2.6.4) 

           We may return the z-axis to the original z-axis by a negative rotation about 
the x-axis through the zenith distance (π/2-H) which yields a transformation matrix 
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Finally the coordinate frame may be aligned with the starting frame by a rotation 
about the z-axis through an angle [π+η] yielding the final transformation matrix 
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 Since the end result of all these transformations is to return to the starting 
coordinate frame, the product of all the transformations yields the identity matrix 
or 

1PPPPPP =π−δφ−π+−π−η+π+ ]2/[)h()]2/([)A2()z()]([ xzxzxz      .  (2.6.7) 
 
We may separate the knowns from the unknowns by remembering that the inverse 
of an orthonormal transformation matrix is its transpose so that 

])2/[()h()2/()A2()z()]([ xzxzxz φ−ππ−δ=−π−η+π+ TTT PPPPPP      .   (2.6.8) 
 
We must now explicitly perform the matrix products implied by equation (2.6.8) 
and the nine elements of the left hand side must equal the nine elements of the 
right hand side. These nine relations provide in a natural way all of the relations 
possible for the spherical triangle. These, of course, include the usual relations 
quoted for the solution to the astronomical triangle. These nine relations are 
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 Since the altitude is defined to lie in the first or fourth quadrants, the first 
of these relations uniquely specifies H. The next two will then uniquely give the 
azimuth A and the following two allow for the unique specification of the 
parallactic angle. Thus these relations are sufficient to effect the coordinate 
transformation from either the defining coordinate frame to the observer's frame 
or vice versa. However, the more traditional solution of the astronomical triangle 
can be found from 

)h()2/(])2/[()A2()2/H()]([ zxxzxz
TT PPPPPP π−δ=φ−π−ππ−η+π+ , (2.6.10) 

 
where only the last row of the matrices is considered. These elements yield 
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These results differ from those found in some astronomical textbooks as we have 
defined the azimuth from the north point. So to get the traditional results we 
would have to replace A by (π-A). Having discussed how we locate objects in the 
sky in different coordinate frames and how to relate those frames, we will now 
turn to a brief discussion of how they are to be located in time. 
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2.7  Time 
 
 The independent variable of Newtonian mechanics is time and thus far we 
have said little about it. Newton viewed time as absolute and 'flowing' uniformly 
throughout all space. This intuitively reasonable view was shown to be incorrect 
in 1905 by Albert Einstein in the development of what has become known as the 
Special Theory of Relativity. However, the problems introduced by special 
relativity are generally small for objects moving in the solar system. What does 
complicate the concept of time is the less sophisticated notion of how it is 
measured. As with other tangled definitions of science, historical developments 
have served to complicate immensely the definition of what ought to be a simple 
concept. We will choose to call the units of time seconds, minutes, hours, days, 
years, and centuries (there are others, but we will ignore them for this book). The 
relationships between these units are not simple and have been dictated by 
history. 
 
 In some very broad sense, time can be defined in terms of an interval 
between two events. The difficulty arises when one tries to decide what events 
should be chosen for all to use. In other words, what "clock" shall we use to 
define time? Clocks run in response to physical forces so we are stuck with an 
engineering problem of finding the most accurate clock. Currently, the most 
accurate clocks are those that measure the interval between atomic processes and 
have an accuracy of the order of 1 part in 1011 to 1 part in 1015. Clocks such as 
these form the basis for measuring time and time kept by them is known as 
international atomic time (TAl for short). However, the world for centuries has 
kept time by clocks that mimic the rising and setting of the sun or rotation of the 
earth. Certainly prehistoric man realized that all days were not of equal length and 
therefore could not serve to define a unit of time. However, the interval between 
two successive transits (crossings of the local meridian) of the sun is a more 
nearly constant interval. If the orbit of the earth were perfectly circular, then the 
motion of the sun along the ecliptic would be uniform in time. Therefore, it could 
not also be uniform along the equator. This non-uniformity of motion along the 
equator will lead to differences in successive transits of the sun. To make matters 
worse, the orbit of the earth is elliptical so that the motion along the ecliptic is not 
even uniform. One could correct for this or choose to keep time by the stars. 
 
 Time that is tied to the apparent motion of the stars is called sidereal time 
and the local sidereal time is of importance to astronomers as it defines the 
location of the origin of the Right Ascension-Declination coordinate frame as 



seen by a local observer. It therefore determines where things are in the sky. Local 
sidereal time is basically defined as the hour angle of the vernal equinox as seen 
by the observer. 
 
 However, as our ability to measure intervals of time became more precise, 
it became clear that the earth did not rotate at a constant rate. While a spinning 
object would seem to provide a perfect clock as it appears to be independent of all 
of the forces of nature, other objects acting through those forces cause 
irregularities in the spin rate. In fact, the earth makes a lousy clock. Not only does 
the rotation rate vary, but the location of the intersection of the north polar axis 
with the surface of the earth changes by small amounts during the year. In 
addition long term precession resulting from torques generated by the sun and 
moon acting on the equatorial bulge of the earth, cause the polar axis, and hence 
the vernal equinox, to change its location among the stars. This, in turn, will 
influence the interval of time between successive transits of any given star. Time 
scales based on the rotation of the earth do not correspond to the uniformly 
running time envisioned by Newton. Thus we have need for another type of time, 
a dynamical time suitable for expressing the solution to the Newtonian equations 
of motion for objects in the solar system. Such time is called terrestrial dynamical 
time (TDT) and is an extension of what was once known as ephemeris time (ET), 
abandoned in 1984. Since it is to be the smoothly flowing time of Newton, it can 
be related directly to atomic time (TAl) with an additive constant to bring about 
agreement with the historical ephemeris time of 1984. Thus we have 

ondssec184.32TAITDT +=   .                              (2.7.1) 
 
Unfortunately, we and the atomic clocks are located on a moving body with a 
gravitational field and both these properties will affect the rate at which clocks 
run compared with similar clocks located in an inertial frame free of the influence 
of gravity and accelerative motion. Thus to define a time that is appropriate for 
the navigation of spacecraft in the solar system, we must correct for the effects of 
special and general relativity and find an inertial coordinate frame in which to 
keep track of the time. The origin of such a system can be taken to be the 
barycenter (center of mass) of the solar system and we can define barycentric 
dynamical Time (TDB) to be that time. The relativistic terms are small indeed so 
that the difference between TDT and TDB is less than .002 sec. A specific 
formula for calculating it is given in the Astronomical Almanac3 .Essentially, 
terrestrial dynamical time is the time used to calculate the motion of objects in the 
solar system. However, it is only approximately correct for observers who would 
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locate objects in the sky. For this we need another time scale that accounts for the 
irregular rotation of the earth. 
 
 Historically, such time was known as Greenwich Mean Time, but this 
term has been supplanted by the more grandiose sounding universal time (UT). 
The fundamental form of universal time (UT1) is used to determine the civil time 
standards and is determined from the transits of stars. Thus it is related to 
Greenwich mean sidereal time and contains non-uniformities due to variations in 
the rotation rate of the earth. This is what is needed to find an object in the sky. 
Differences between universal time and terrestrial dynamical time are given in the 
Astronomical Almanac and currently (1988) amount to nearly one full minute as 
the earth is "running slow". Of course determination of the difference between the 
dynamical time of theory and the observed time dictated by the rotation of the 
earth must be made after the fact, but the past behavior is used to estimate the 
present. 
 
 Finally, the time that serves as the world time standard and is broadcast by 
WWV and other radio stations is called coordinated universal time (UTC) and is 
arranged so that 

ondsec1UTC1UT <−   .                               (2.7.2) 
 
Coordinated universal time flows at essentially the rate of atomic time (give or 
take the relativistic corrections), but is adjusted by an integral number of seconds 
so that it remains close to UT1. This adjustment could take place as often as twice 
a year (on December 31 and June 30) and results in a systematic difference 
between UTC and TAl. This difference amounted to 10 sec. in 1972. From then to 
the present (1988), corrections amounting to an additional 14 sec. have had to be 
made to maintain approximate agreement between the heavens and the earth. 
 
 Coordinated universal time is close enough to UTl to locate objects in the 
sky and its conversion to local sidereal time in place of UTl can be effectively 
arrived at by scaling by the ratio of the sidereal to solar day. Due to a recent 
adoption by the International Astronomical Union that terrestrial Longitude will 
be defined as increasing positively to the east, local mean solar time will just be  

λ+= UTC)LMST(          ,                                (2.7.3) 
 
where A is the longitude of the observer. The same will hold true for sidereal time 
so that 
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λ+= )GST()LST(                ,                            (2.7.4) 
 
where the Greenwich sidereal time (GST) can be obtained from UTl and the date. 
The local sidereal time is just the local hour angle of the vernal equinox by 
definition so that the hour angle of an object is 

.)A.R()LST(h −=         .                                (2.7.5) 
 
Here we have taken hour angles measured west of the prime meridian as 
increasing. 
 
 Given the appropriate time scale, we can measure the motion of objects in 
the solar system (TDT) and find their location in the sky (UTl and LST). There 
are numerous additional small corrections including the barycentric motion of the 
earth (its motion about the center of mass of the earth-moon system) and so forth. 
For those interested in time to better than a millisecond all of these corrections are 
important and constitute a study in and of themselves. For the simple acquisition 
of celestial objects in a telescope, knowledge of the local sidereal time as 
determined from UTC will generally suffice. 
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Chapter 2: Exercises 
 
 

1. Transform from the Right Ascension-Declination coordinate system (α,δ) to 
Ecliptic coordinates (λ , β) by a rotation matrix. Show all angles required 
and give the transformation explicitly. 

 
2. Given two n-dimensional coordinate systems Xi and Xj and an orthonormal 

transformation between the two Aij, prove that exactly n(n-1)/2 terms are 
required to completely specify the transformation. 

 
3. Find the transformation matrix appropriate for a transformation from the 

Right Ascension-Declination coordinate system to the Alt-Azimuth 
coordinate system. 

 
4. Consider a space shuttle experiment in which the pilot is required to orient 

the spacecraft so that its major axis is pointing at a particular point in the 
sky (i.e. α,δ). Unfortunately his yaw thrusters have failed and he can only 
roll and pitch the spacecraft. Given that the spacecraft has an initial 
orientation (α1, δ1), and (α2, δ2) of the long and short axes of the spacecraft) 
and must first roll and then pitch to achieve the desired orientation, find the 
roll and pitch angles (ξ,η) that the pilot must move the craft through in 
order to carry out the maneuver. 
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The Basics of Classical Mechanics 
 
 
 
 
 Celestial mechanics is a specialized branch of classical mechanics and a 
proper understanding of the subject requires that one see how it is embedded in 
this larger subject. One might describe the fundamental problem of celestial 
mechanics as the description of the motion of celestial objects that move under 
the influence of the gravitational forces present in the solar system. The approach 
of classical mechanics to this problem would be to divide it into two parts. The 
first of these would be to write the equations of motion for an object moving 
under the influence of an arbitrary collection of mass points. The second part then 
consists of solving those equations. Therefore it is appropriate that we spend some 
time with the fundamentals of classical mechanics so that their relation to the 
more specific subject of celestial mechanics is clear. The most basic concept of all 
of theoretical physics is the notion of a conservation law. But before one can 
discuss the conservation of quantities, one must define them. 
 
3.1  Newton's Laws and the Conservation of Momentum 
 and Energy 
 
 Newton's famous laws of motion can largely be taken as a set of 
definitions. Consider the second law 
 

dt
pd

dt
)vm(damF

rr
rr

≡==   .                                        (3.1.1) 

 
Here pv  is defined as the linear momentum. It is a simple matter to describe 
operationally what is meant by mass m and acceleration ar . However, a clear 
operational definition of what is meant by force that does not make use of some 
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form of equation (3.1.1) is more difficult. However, one can use the first law to 
describe a situation wherein forces are absent, and that is sufficient to arrive at a 
conservation law for linear momentum, namely  
 

⎪⎭

⎪
⎬
⎫

=

==

.constp
dt

pd0F
r

rr

   .                                       (3.1.2) 

We may use the concept of linear momentum to define a additional quantity 
called angular momentum ( L

r
) so that  

 
prL
rrr

×≡   .                                                (3.1.3) 
 
Since p

r
 is a conserved quantity, it would seem plausible that angular momentum 

will also be a conserved quantity.  
 
 Let us define a force-like quantity, by analogy with the angular 
momentum, called the torque as 
 

⎟
⎠
⎞

⎜
⎝
⎛ ×−

×
=×=×≡ p

dt
rd

dt
)pr(d

dt
pdrFrN

r
rrrr

rrrr
  .                      (3.1.4) 

However, 

0vmvp
dt
rd

=×=×
rrr

r

  .                                          (3.1.5) 

Therefore 

dt
LdN
r

r
=   .                                                     (3.1.6) 

Thus a force free situation will also be a torque free situation and the angular 
momentum will be constant and conserved in exactly the same sense as the linear 
momentum. 
 
 Finally, let us define the concept of work as the line integral of force over 
some path or 
 

∫ •≡
b

ab,a sdFW rr
   .                                          (3.1.7) 

 
Note that the quantity called work is a scalar quantity as only the component of 
the force directed along the path contributes to the work. We may use the notion 
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of work to say something about the nature of the forces along the path. 
Specifically, if no net work is done while completing a closed path so that 

0sdF =•∫
rr

   ,                                               (3.1.8) 
and this is true for any closed path, the force is said to be a conservative force. 
Now there is a theorem in mathematics known as Stokes theorem where 
 

∫ ∫ •×∇=•
c s

Ad)Q(sdQ
rrrr

   .                                   (3.1.9) 

 
The left hand quantity is a line integral along some curve C which bounds a 
surface S. The quantity on the right hand side is a surface integral over that 
surface where d A

r
 is a unit vector normal to the differential area d A

r
. Applying 

this theorem to equation (3.1.8) we get 
 

∫ ∫ •×∇=•
c s

Ad)F(sdF
rrrr

    .                                 (3.1.10) 

 
 But for conservative force fields this result must be true for all paths and 
hence the right hand side must hold for all enclosed areas. This can only be true if 
the integrand of the right hand integral is itself zero so that 
 

0F =×∇
r

   .                                                 (3.1.11) 
 
Since the curl of the gradient is always zero (i.e. ∇ points in the same direction as 
itself), we can write a conservative force as the gradient of some scalar V so that 
 

VF −∇=
r

  .                                                 (3.1.12) 
 
The quantity V is called the potential energy. Since the quantity F

r
 is related to 

operationally defined parameters, the potential energy is defined only through its 
gradient. Thus we may add or subtract any constant to the potential energy 
without affecting measurable quantities. This is often done for convenience and 
the additive constant must be included in any self consistent use of the potential. 
From equations (3.1.7) and (3.1.12) it is clear that we can determine the work 
done in moving from point a to point bin terms of the potential as  
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However, 

∑=
j

jjdxx̂sdr    ,                                     (3.1.14) 

so that 
 

)b(V)a(VdVW
b

ab,a −=−= ∫   .                            (3.1.15) 

 
Thus the amount of work done on an object is simply equal to the change in the 
potential energy in going from a to b. Now we may write 
 

∫ ∫ ∫∫ =•=•=•
b

a

b

a
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2

2
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dtvmdtv
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pdsdF r

r
r

r
rr

         .     (3.1.16) 

 
so that the change in the kinetic energy of the particle in going from a to b is 
 

)b(V)a(V)b(T)a(T −=−    .                             (3.1.17) 
 
Thus the sum of the kinetic and potential energies E is the same at points a and b 
so that 

)a(V)a(T)b(V)b(T +=+    .                             (3.1.18) 
 
This is nothing more than a statement of the conservation of energy. Clearly 
energy conservation is a weaker conservation law than conservation of 
momentum as we had to assume that the force field was conservative in order to 
obtain it. 
 
 
3.2  Virtual Work, D'Alembert's Principle, and Lagrange's Equations of 
 Motion 
 
 Consider a system of particles that are not subject to any constraints. A 
constraint is something that cannot be represented in a general way by the forces 
acting on all the objects. For example, an object moving under the influence of 
gravity but constrained to roll on the surface of a sphere for part of its motion 
would be said to be subject to constraints imposed by the sphere. Such constraints 
imply that forces are acting on the object in such a way as to constrain the motion, 
but the forces are not known a priori and must be found as part of the problem. 
Only their effect on the object (i.e. its constrained motion) is known. Some 
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constraints can be expressed in terms of the coordinates of the problem and are 
known as holonomic constraints. Constraints that cannot be written in terms of 
the coordinates alone are called nonholonomic constraints. The rolling motion of 
an object where there is no slippage is an example. The constraint here is on the 
velocity of the point in contact with the surface. We will leave the consideration 
of such systems for an advanced mechanics course. 
 
 The notion of virtual work is a creation of James Bernoulli and comes 
about from considering infinitesimal displacements of the particles that are 
subject to forces iF

r
. We can call these displacements ir

r
δ . If these infinitesimal 

displacements can be called virtual displacements, then ii rF
rr
δ•  can be called the 

virtual work done on the ith particle. The virtual nature of these displacements 
becomes clear' when we require that the forces iF

r
 do not change in response to 

the virtual displacements  in contrast to the case for real displacements. For a 
system in equilibrium, the forces on the individual particles vanish and therefore 
so does the virtual work. For a dynamical system subject to Newton's laws of 
motion we can say that the forces are balanced by the accelerative response of the 
system so that 

ir
r
δ

∑ =δ••
i

ii 0r)pF( r&r
r

   .                                       (3.2.1) 

This is known as D'Alembert's principle and is useful for what we can derive from 
it. 
 
 It may be the case that the ir

r 's are not all linearly independent. To this 
point, the choice of the coordinate system used to represent the motion of the 
system has been arbitrary. Thus it is entirely possible that the coordinates of 
choice will not be independent of one another. Holonomic constraints can also 
produce a set of coordinates that are not linearly independent. However, we can 
hardly expect to unravel the dynamical motion of a system of particles if the 
coordinates chosen to represent them depend on each other. Therefore, we shall 
require that the coordinates chosen to represent the system are indeed linearly 
independent. We shall call any set of coordinates that are linearly independent and 
describe all the particles of the system generalized coordinates. Now consider a 
transformation from our initial arbitrary set of coordinates to a set of coordinates 
which are linearly independent and which we shall denote by qi. We could write 
such a transformation as 

∑∂
∂
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j

j
j

i
i dq

q
rr
r

r    .                                      (3.2.2) 

However, since the qj 's are linearly independent we get 
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Substitution of this into D'Alembert's principle gives 
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Here we have used Q. to stand for the term in parentheses on the left hand side of 
the equation. Now since the velocity of any particle can be written in terms of the 
generalized coordinates as 
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we may calculate its partial derivative with respect to the total time derivative of 
the generalized coordinates as 
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This allows us to write the expanded form of D'Alembert's principle as 
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From the definition of kinetic energy, we get 
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However, this result must be true for arbitrary virtual displacements of the 
generalized coordinates δqj. Such can only be the case if it is true for each term of 
the sum. Therefore 
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 From the definition of Qj [see equation (3.2.4)] we can write for 
conservative forces that 
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Very rarely is the potential energy an explicit function of time so that 
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From equations (3.2.10) and equation (3.2.11) it is clear that we can combine the 
potential energy with the kinetic energy in equation (3.2.9) and thereby eliminate 
the Qjs. So define 

L VT −≡   .                                            (3.2.12) 
 
which is known as the Lagrangian. In terms of the Lagrangian, equation (3.2.9) 
becomes 

0
qqdt

d

jj
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂ LL
&

   .                                 (3.2.13) 

 
These are known as Lagrange's equations of motion and their solution constitutes 
the solution of the first part of the basic problem of classical mechanics. The 
utility of Lagrange’s equations of motion is clear. Given a set of coordinates that 
are linearly independent, find an expression for the kinetic and potential energies 
in terms of those coordinates and their time derivatives. Equation (3.2.13) then 
provides a mechanical means for generating the equations of motion for the 
particle of interest in the chosen coordinates. 
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 Let us consider as an example the equations of motion for two point 
masses moving under the influence of their mutual self-gravity. For a generalized 
set of coordinates, let us use Cartesian coordinates with the origin at the center of 
mass of the system. Further let the mass of one particle be m and the total mass of 
the system be M. Since this is an isolated system, the motion of the center of mass 
can be taken to be zero. We can always transform to an inertial frame that moves 
with the center of mass. Thus the kinetic and potential energies can be written as 
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and the Lagrangian becomes 
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Substituting this into equation (3.2.13) and remembering that qi is xi we can write 
the equations of motion as 
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Before turning to the problem of determining the potential for an arbitrary 
collection of mass points we will briefly discuss a related method of obtaining the 
equations of motion. 
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3.3  The Hamiltonian 
 
 There is an approach to mechanics due to Sir W. R. Hamilton that is very 
similar to Lagrange's and has wide ranging applications in theoretical physics. 
The Hamiltonian formulation adds nothing new in the form of physical laws, but 
provides what many feel is a much more powerful formalism with which any 
student of the physical sciences should be familiar. 
 
 The basic idea of the Hamiltonian formulation is to write equations of 
motion in terms of coordinates and the momentum instead of the coordinates and 
their time derivatives. Lagrange's equations of motion are second order 
differential equations requiring 6N constants of integration, which are usually the 
initial values of  and qiq& i. If we choose as generalized coordinates of the problem 
(qi ,pi ,t), then we can in principle write 2N first order equations of the motion still 
requiring 6N constants, but reducing the order of the equations to be solved. This 
can be accomplished by subjecting the Lagrangian equations of motion to a 
transformation known as the Legendre transformation. First, let us define what we 
will mean by the generalized momenta as 
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Lagrange's equations and this definition allow us to write 
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Now let us just guess a function of the form 
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and call it the Hamiltonian. The total differential of the right hand side of equation 
(3.3.3) yields 
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Now the second and third terms cancel by virtue of the definition of the 
generalized momenta [equation (3.3.1) multiplied by and summed over i] .The 
partial derivative of the Lagrangian in the fourth term can be replaced by equation 
(3.3.2) so that the total differential of H becomes 

iqd&
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The far right hand part of equation (3.3.5) is just the definition of a total 
differential. Since the generalized coordinates are linearly independent, the three 
terms on each side of equation (3.3.5) must be separately equal so that 
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These equations are known as the canonical equations of Hamilton and they form 
a set of 2n first order equations for the motion of the constituents of the system. 
 
 From the definition of a total time derivative we can write 
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However, by substituting for  and  from the Hamilton equations of motion, 
we see that the term in parentheses vanishes so that 

iq& ip&
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 Thus if the Lagrangian is not an explicit function of time, then the 
Hamiltonian will not vary with time at all and will therefore be a constant of the 
motion. If, in addition, the transformation to the generalized coordinates also does 
not depend explicitly on time, the Hamiltonian will be the total energy of the 
system. In most celestial mechanics problems this is indeed the case. The 
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potential depends only on position and not explicitly on time and the generalized 
coordinates are usually the position coordinates themselves. Thus the Hamiltonian 
is a constant of the system and is equal to the total energy. The primary exception 
to this is when analysis is done in a rotating or non-inertial coordinate frame. 
Then the transformation to the generalized coordinates does explicitly involve 
time and thus the Hamiltonian is not the total energy of the system. However, if 
the Lagrangian is not an explicit function of time, the Hamiltonian is still a 
constant of the motion. 
 
 One standard way of proceeding with a classical mechanics problem is to 
find the Lagrangian by determining the potential. Then equation (3.3.3) can be 
used directly to calculate the Hamiltonian. Then equations (3.3.6) yield the 
equations of motion and usually one of the constants of the motion has been found 
in the process. This formalism is so powerful that it forms the basis for a great 
deal of quantum mechanics. It is clear that for celestial mechanics, the central 
remaining problem to finding the equations of motion is the determination of the 
potential and so in the next chapter we will turn to various methods by which that 
can be done. 
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Chapter 3:  Exercises 
 
 
1. The escape velocity from the Earth is the minimum velocity required to 

escape the influence of the Earth's gravitational field. Neglecting 
atmospheric drag, use basic conservation laws to find the value for the 
escape velocity from the surface of the Earth. 

 
2. a: Find the equations of motion for a rocket projected vertically from 

the surface of the Earth. Again, neglect atmospheric drag. 
 
 b: Assuming the rate of mass loss from the rocket is constant and equal 

to 1/60 of the initial mass per sec, show that if the exhaust velocity 
is 2073 m/s, then for the rocket to reach escape velocity, the ratio of 
the mass of the fuel to the empty rocket must be about 300. 

 
3. Consider a system of n particles moving under the influence of gravity 

alone. 
 
 a: Write down the Lagrangian for the system. 
 
 b: Find the equations of motion in Cartesian coordinates for the system  
 
 
4.  Consider a single particle moving under the influence of the potential Φ 

where 
 

 ∑
= +

θ
=Φ

n

0k

k
)1k(

)kcos(a      . 

 
 Find the Lagrangian, Hamiltonian, and the equations of motion in spherical 

coordinates for the particle. 
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4 
 
 
 

Potential Theory 
 
 
 
 
 
 
 We have seen how the solution of any classical mechanics problem is first 
one of determining the equations of motion. These then must be solved in order to 
find the motion of the particles that comprise the mechanical system. In the 
previous chapter, we developed the formalisms of Lagrange and Hamilton, which 
enable the equations of motion to be written down as either a set of n second order 
differential equations or 2n first order differential equations depending on whether 
one chooses the formalism of Lagrange or Hamilton. However, in the methods 
developed, the Hamiltonian required knowledge of the Lagrangian, and the 
correct formulation of the Lagrangian required knowledge of the potential through 
which the system of particles moves. Thus, the development of the equations of 
motion has been reduced to the determination of the potential; the rest is 
manipulation. In this way the more complicated vector equations of motion can be 
obtained from the far simpler concept of the scalar field of the potential. 
 
 
 To complete this development we shall see how the potential resulting 
from the sources of the forces that drive the system can be determined. In keeping 
with the celestial mechanics theme we shall restrict ourselves to the forces of 
gravitation although much of the formalism had its origins in the theory of 
electromagnetism - specifically electrostatics. The most notable difference 
between gravitation and electromagnetism (other than the obvious difference in 
the strength of the force) is that the sources of the gravitational force all have the 
same sign, but all masses behave as if they were attractive.  



4.1  The Scalar Potential Field and the Gravitational Field 
 
 In the last chapter we saw that any forces with zero curl could be derived 
from a potential so that if 

0F =×∇
r

   ,                                               (4.1.1) 
then 

VF ∇=
r

   ,                                                (4.1.2) 
 
where V is the potential energy. Forces that satisfy this condition were said to be 
conservative so that the total energy of the system was constant. Such is the case 
with the gravitational force. Let us define the gravitational potential energy as Ω 
so that the gravitational force will be 

Ω−∇=F
r

   .                                               (4.1.3) 
Now by analogy with the electromagnetic force, let us define the gravitational 
field G

r
 as the gravitational force per unit mass so that 

 
Φ∇≡Ω∇−== )m/(m/F

rr
G    .                             (4.1.4) 

 
Here Φ is known as the gravitational potential, and from the form of equation 
(4.1.4) we can draw a direct comparison to electrostatics. G

r
 is analogous to the 

electric field while Φ is analogous to the electric potential. 
 
 Now Newtonian gravity says that the gravitational force between any two 
objects is proportional to the product of their masses and inversely proportional to 
the square of the distance separating them and acts along the line joining them. 
Thus the collective sum of the forces acting on a particle of mass m will be 
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where we have included an expression on the right to indicate the total force 
arising from a continuous mass distribution ρ(r). Thus the gravitational field 
resulting from such a configuration is 
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The potential that will give rise to this force field is   
 

'dV
r'r

)'r(G
rr

GM)r(
i

'Vi

i∑ ∫ −
ρ

=
−

=Φ rr

r

rr
r     .                            (4.1.7) 

 
The evaluation of the scalar integral of equation (4.1.7) will provide us with the 
potential (and hence the potential energy of a unit mass) ready for insertion in the 
Lagrangian. In general, however, such integrals are difficult to do so we will 
consider a different representation of the potential in the hope of finding another 
means for its determination. 
 
4.2  Poisson's and Laplace's Equations 
 
 The basic approach in this section will be to turn the integral expression 
for the potential into a differential expression in the hope that the large body of 
knowledge developed for differential equations will enable us to find an 
expression for the potential. To do this we will have to make a clear distinction 
between the coordinate points that describe the location at which the potential is 
being measured (the field point) and the coordinates that describe the location of 
the sources of the field (source points). It is the latter coordinates that are summed 
or integrated over in order to obtain the total contribution to the potential from all 
its sources. In equations (4.1.5 - 4.1.7) r

r
denotes the field points while 'r

r
labels the 

sources of the potential.  
 
           Consider the Laplacian {i.e. the divergence of the gradient [ ]} 
operating on the integral definition of the potential for continuous sources [the 
right-most term in equation (4.1.7)]. Since the Laplacian is operating on the 
potential, we really mean that it is operating on the field coordinates. But the field 
and source coordinates are independent so that we may move the Laplacian 
operator through the integral sign in the potential's definition. Thus, 

( )∇•∇=∇2
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rr      .                       (4.2.1) 

 
Since the Laplacian is the divergence of the gradient we may make use of the 
Divergence theorem 

∫ ∫ •=•∇
V S

AdHdvH
rrr

   ,                                 (4.2.2) 
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to write 
 

∫∫ •−∇ρ=−∇•∇ρ −−

A
1

'V
1 Ad)]r'r()['r(G'dV])r'r()['r(G

rrrrrrr     .           (4.2.3) 

 
Here the surface A is that surface that encloses the volume V'. 
 
 
 Now consider the simpler function (l/r) and its gradient so that 
 

[ ]∫ ∫ ω−=ω−=
•

−=•∇
A A 2 d

r
Adr̂Adr

1 ∫A
r

r
   .                        (4.2.4) 

The integrand of the second integral is just the definition of the differential solid 
angle so that the integral is just the solid angle ω subtended by the surface A as 
seen from the origin of r. If the source and field points are different physical 
points in space, then we may construct a volume that encloses all the source 
points but does not include the field point. Since the field point is outside of that 
volume, then the solid angle of the enclosing volume as seen from the field point 
is zero. However, should one of the source points correspond to the field point, 
the field point will be completely enclosed by the surrounding volume and the 
solid angle of the surface as seen from the field point will be 4π steradians. 
Therefore the integral on the right hand side of equation (4.2.3) will either be 
finite or zero depending on whether or not the field point is also a source point. 
Integrands that have this property can be written in terms of a function known as 
the Dirac delta function which is defined as follows: 
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⎪
⎬
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≡δ
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∫ 1dr)r(

0r0)r(
      .                              (4.2.5) 

 
If we use this notation to describe the Laplacian of (l/r) we would write 
 

)r(4)r/1(2 πδ−=∇          ,                                (4.2.6) 
 
and our expression for the potential would become  
 

∫ ∫ ρ−δπ−=−ρ∇=Φ∇ −
'V 'V
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This integral has exactly two possible results. If the field point is a source point 
we get 

)r(G4)r(2 ρπ−=Φ∇   ,                                      (4.2.8) 
 
which is known as Poisson's equation. If the field point is not a source point, then 
the integral is zero and we get 

0)r(2 =Φ∇    .                                               (4.2.9) 
 
This is known as Laplace's equation and the solution of either yields the potential 
required for the Lagrangian and the equations of motion. Entire books have been 
written on the solution of these equations and a good deal of time is spent in the 
theory of electrostatics developing such solutions (eg. Jackson4). All of that 
expertise may be borrowed directly for the solution of the potential problem for 
mechanics. 
 
 In celestial mechanics we are usually interested in the motion of some 
object such as a planet, asteroid, or spacecraft that does not contribute 
significantly to the potential field in which it moves. Such a particle is usually 
called a test particle. Thus, it is Laplace's equation that is of the most interest. 
Laplace's equation is a second order partial differential equation. The solution of 
partial differential equations requires "functions of integration" rather than 
constants of integration expected for total differential equations. These functions 
are known as boundary conditions and their functional nature greatly complicates 
the solution of partial differential equations. The usual approach to the problem is 
to find some coordinate system wherein the functional boundary conditions are 
themselves constants. Under these conditions the partial differential equations in 
the coordinate variables can be written as the product of total differential 
equations, which may be solved separately. Such coordinate systems are said to 
be coordinate systems in which Laplace's equation is separable. It can be shown 
that there are thirteen orthonormal coordinate frames (see Morse and Feshbackl) 
in which this can happen. Unless the boundary conditions of the problem are such 
that they conform to one of these coordinate systems, so that the functional 
conditions are indeed constant on the coordinate axes, one must usually resort to 
numerical methods for the solution of Laplace's equation. 
 

 
 
 
 
 
 

55

 Laplace's equation is simply the homogeneous form of Poisson's equation. 
Thus, any solution of Poisson's equation must begin with the solution of Laplace's 
equation. Having found the homogeneous solution, one proceeds to search for a 
particular solution. The sum of the two then provides the complete solution for the 
inhomogeneous Poisson's equation. 



 
 In this book we will be largely concerned with the motion of objects in the 
solar system where the dominant source of the gravitational potential is the sun 
(or some planet if one is discussing satellites). It is generally a good first 
approximation to assume that the potential of the sun and planets is that of a point 
mass. This greatly facilitates the solution of Laplace's equation and the 
determination of the potential. However, if one is interested in the motion of 
satellites about some non-spherical object then the situation is rather more 
complicated. For the precision required in the calculation of the orbits of 
spacecraft, one cannot usually I assume that the driving potential is that of a point 
mass and therefore spherically symmetric. Thus, we will spend a little time 
investigating an alternative method for determining the potential for slightly 
distorted objects. 
 
4.3 Multipole Expansion of the Potential 
 
 Let us return to the integral representation of the gravitational potential 

∫ −
ρ

=Φ
'V r'r

'dV)'r(G)r( rr     .                                  (4.3.1) 

Assume that the motion of the test particle is such that it never comes "too near" 
the sources of the potential so that r'r rr

<< . Then we may expand the 
denominator of the integrand of equation (4.3.1) in a Taylor series about  r' so that 
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or in vector notation  
 

)]r/1('r'r'r[
6
1)]r/1('r'r[)]r/1('r[)r/1(]r'r[ :2

11 ∇∇∇∴−∇∇+•∇−=− − rrrrrrrr
 .   (4.3.3) 

 
In Chapter 1 we defined the scalar product to represent complete summation over 
all available indices so that the resulting scalar product of tensors with ranks m 
and n was nm − . However, in order to make clear that multiple summations are 
needed in equation (4.3.3), I have used multiple "dots". The definition of this 
notation can be seen from the explicit summation in equation (4.3.2) or can be 
defined by 

)'AB)('BA('B'ABA : rrrrrrrr
••=      .                            (4.3.4) 
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Using this expansion to replace the denominator of the integral definition of the 
potential [equation (4.3.1)] we get 
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This expansion allows the separation of the dependence of the field coordinates 
from the source coordinate. Thus the integrals are properties of the source of the 
potential only and may be calculated separately from any other aspect of the 
mechanics problem. Once known, they give the potential explicitly as a function 
of the field coordinates alone and this is what we need for specifying the 
Lagrangian. We can make this clearer by re-writing equation (4.3.5) as 
 

{ }+⋅⋅⋅+∇∇∇−∇∇+∇•−=Φ )r/1(
6
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1 Q
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SQ  .   (4.3.6) 

 
This expansion of the potential is known as a "multipole" expansion for the 
parameters M, P

r
, Q , and S which are known as the multipole moments of the 

source distribution. For the gravitational potential the unipole moment is a scalar 
and just equal to the total mass of the sources of the potential. The vector quantity 
P
r

is called the dipole moment and Q is the tensor quadrupole moment, etc. The 
higher order moments are in turn higher order tensors. The repeated operation of 
the del-operator ∇ on the quantity (l/r) also produces higher order tensors, which 
are simply geometry and have nothing to do with the mass distribution itself. The 
first two of these are 

         .                     (4.3.7) 
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As one considers higher order terms the geometrical tensors represented by the 
multiple gradient operators contain a larger and larger inverse dependence on r 
and therefore play a successively diminished role in determining the potential. 
Thus we have effectively separated the positional dependence of the field point 
from the mass distribution that produces the various multipole moments. 
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 By way of example, let us consider two unequal mass points separated by 
a distance , located on the z-axis, and with the coordinate origin at the center of 
mass (see Figure 4.1). From the definition of the multipole moments, we have 

l
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 Figure 4.1 shows the arrangement of two unequal masses for the 

calculation of the multipole potential resulting from them. 
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which, when combined with the coordinate representation of equation (4.3.6), 
yields a series expansion for the potential of the form 
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 Unless the field point comes particularly close to the sources, this series 
will converge quickly. We can also make use of a pleasant property of the 
gravitational force, namely that there are no negative "charges" in the force law of 
gravitation. Thus we may always choose a coordinate system such that 
 

0'dV)'r('r)'r(P
'V

=ρ= ∫
rrr     .                              (4.3.10) 

This means that for celestial mechanics there will never be a dipole moment of the 
potential as long as we choose the coordinate frame properly. This is usually done 
by taking advantage of any symmetry presented by the object and locating the 
origin at the center of mass. Not only does the dipole moment vanish, but for 
objects exhibiting plane symmetry all odd moments of the multipole expansion 
vanish for the gravitational potential. This certainly enhances the convergence of 
the series expansion for the potential and means that the first term that must be 
included after the point-mass potential term is the quadrapole term. The inclusion 
of this term means that the error in the potential will be of the order O(1/r5). Even 
though the potential represented by a multipole expansion converges rapidly with 
increasing distance, the contribution of such terms can be significant for small 
values of r. Thus there is great interest in determining the magnitude of these 
terms for the potential field of the earth so that the orbits of satellites may be 
predicted with greater certainty. 
 
 We have now described methods whereby the potential can be calculated 
for an arbitrary collection of mass points to an arbitrary degree of accuracy. The 
insertion of the potential into the Lagrangian will enable one to determine the 
equations of motion and the solution of these equations then constitutes the 
solution of any classical mechanics problem. Therefore, let us now turn to the 
solution of specific problems found in celestial mechanics. 
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 Chapter 4: Exercises 
 
1. The potential energy of the interaction between a multipole T and a scalar 

potential field Φ is given by 
 
        U = T(i)uL(i)Φ  , 
 where T(i) is a tensor of rank (i) and L(i)Φ describes i applications of the del 

operator to the scalar potential Φ. The symbol u stands for the most general 
application of the scalar product, namely the contraction (i.e., the addition) 
of the two resulting tensors over all indices. 

 a: Consider four equal masses with Cartesian three dimensional 
coordinates 

  mass #   X  Y  Z
     #1  -1  0  0 
    #2  +1  0  0 
    #3   0  2  2 
    #4   0 -3 -3      . 
 
 Find the total self energy of the system. 
 
 b: Find the potential energy of the above system with a fifth identical 

mass located at (0,0,0). 
 
2. Given that the interaction energy of a dipole and quadrupole may be written                                       

as                                               
⎟
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⎟
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 show that Upq = Uqp.   
   
3. Use a multipole expansion to find the potential field of three equal mass 

points located at the vertices of an equilateral triangle with side d. Restrict 
your solution to the plane of the triangle and keep only the first two terms of 
the expansion. 
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4. Find the interaction energy of a 10 kg sphere with the Earth-Moon system 
when the three are located so as to form an equilateral triangle. Assume 
the Earth and Moon are spherical. Compare the relative importance of the 
first two terms of the multipole expansion for the Earth-Moon potential. 
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5 
 
 
 
 
 
 

Motion under the Influence  
of a Central Force 

 
 
 
 
 
 
 The fundamental forces of nature depend only on the distance from the 
source. All the complex interactions that occur in the real world arise from these 
forces, and while many of them are usually described in a more complex manner, 
their origin can be found in the fundamental forces that depend only on distance. 
Thus even the intricate forces of aerodynamic drag can ultimately be described as 
resulting from the electrostatic potential of the air molecules scattering with the 
electrostatic potential of the molecules of the aircraft, and the electrostatic force is 
essentially one that depends on distance alone. It is the presence of many sources 
of the distance-dependent forces that enables the complex world we know to 
exist. Thus, in order to understand complex phenomena, it is appropriate that we 
begin with the simplest. Therefore we will begin by applying the tools of 
mechanics developed in the previous two chapters to describe the motion of an 
object moving under the influence of a single source of a force that depends only 
on the distance. We will call this object a "test particle" to make clear that its 
motion in no way affects the source of the potential. Such a situation is known as 
a central force problem since the source may be located at the origin of the 
coordinate system making it central to the resulting description. 
 



5.1  Symmetry, Conservation Laws, the Lagrangian, and Hamiltonian for 
 Central Forces 
 
 Since there is a single source producing a force that depends only on 
distance, the force law is spherically symmetric. If this is the case, then there can 
be no torques present in the system as there would have to be a preferred axis 
about which the torques act. That would violate the spherical symmetry so 

0
dt
LdN ==
r

r
   .                                         (5.1.1) 

Equation (5.1.1) clearly means that the total angular momentum of the test 
particle does not change in time. Specifically, it means that the direction of the 
angular momentum vector doesn't change. Since there is only one particle in this 
system, this is little more than a statement of the conservation of angular 
momentum, but it has a great simplifying implication. The radius vector r

r
 and the 

particle's linear momentum p
r

 define a plane. Since 
prL
rrr

×=    ,                                              (5.1.2) 
the angular momentum is always perpendicular to that plane and being constant in 
space requires that the motion of the particle is confined to that plane. Thus we 
can immediately reduce the problem to a two dimensional description.  
 
 Since there is only one particle in the system and we require the total 
energy of the system to be constant, the total energy of the particle must be 
constant. Thus such a force is conservative and we may use the Lagrangian 
formalism of Chapter 3 to obtain the equations of motion. We begin this 
procedure by choosing a set of generalized coordinates. Remember that the only 
requirement for the generalized coordinates is that they span the space of the 
motion and be linearly independent. For motion that is confined to a plane defined 
by the action of a central force, the logical choice of a coordinate frame is polar 
coordinates with the center of the force field located at the origin of the coordinate 
system. However, since the kinetic energy is more obviously written in Cartesian 
coordinates, let us use the definition of the Lagrangian to write 
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where Φ(r) is the potential giving rise to the conservative central force. The 
transformation from Cartesian coordinates to polar coordinates is  
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so that 
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Substitution of these expressions into the Lagrangian gives 
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Lagrange's equations of motion for polar coordinates will then be 
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In terms of the polar coordinates [r,θ] the quantities required for Lagrange's 
equations of motion are: 
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so that the explicit equations of motion become 
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 Now in Chapter 3 we developed the Hamiltonian from the Lagrangian and 
the generalized momenta [see equations (3.3.1- 3.3.3)] and it is illustrative to do 
this explicitly for the case of a central force. The generalized momenta can be 
obtained from the Lagrangian by means of equation (3.3.1) so for polar 
coordinates we have 
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From equation (3.3.3) we can then write the Hamiltonian as 
 

( ) ( ) EUT)r(mmrrmmrrm)t,,r,p,p(H 22
2
12

2
1222

r =+=Φ+θ+−θ+=θθ
&&&& .  (5.1.11) 

 
As long as the Lagrangian and generalized coordinates were not explicit functions 
of time, the Hamiltonian is an integral of the motion. Since from equation (5.1.11) 
it is clear that the Hamiltonian is also the total energy, we have effectively 
recovered the law of conservation of energy. The Hamilton canonical equations of 
motion [see equations (3.3.6)] effectively add nothing new to the problem since 
we already have two constants of the motion (i.e., the angular momentum and the 
total energy). Thus we can turn to the implications of these two constants. 
 
 
5.2  The Areal Velocity and Kepler's Second Law 
 
 The θ-equation of motion that gives us the constancy of angular 
momentum enables us to write 

Lmrmr 22 =ω=θ&    .                                           (5.2.1) 
 
The differential area included between two radius vectors separated by a 
differential angle dθ is just 

( )θ= rdrdA 2
1   .                                                (5.2.2) 

 
Let us call the time derivative of this area the areal velocity so that 
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 Thus we could say that the areal velocity of the test particle is constant and 
merely be re-stating the conservation of angular momentum. This is indeed the 
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way Johannes Kepler gave his second law of planetary motion. However, Kepler 
had no conception of angular momentum and his laws dealt only with the planets. 
Here we see that Kepler's second law not only applies to objects moving under the 
influence of the gravitational force, but will hold for an object moving under the 
influence of any central force regardless of its distance dependence. Thus Kepler's 
second law of planetary motion is far more general than Kepler ever knew. 
 
 We may use this result to eliminate  from the first of the two Lagrangian 
equations of motion and thereby reduce the problem to that of one dimension. 
Solving equation (5.2.1) for   and substituting into the r-equation (5.1.9) we get  
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We can obtain the result of the Hamiltonian directly by multiplying equation 
(5.2.4) by r& and re-writing as 
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which becomes 
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5.3  The Solution of the Equations of Motion 
 
 Finding the two integrals of the motion goes along way to completing the 
solution of the problem. These two constants essentially amount to integrating 
each of equations (5.1.9) once so that the equations of motion can be written as 
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The first of these is obtained by integrating equation (5.2.6) and replacing  from 
equation (5.2.1). The other is equation (5.2.1) itself. These are two first order 
differential equations and require two more constants to completely specify their 

θ&



solution. These two additional constants are known as initial conditions and it is 
worth distinguishing them from integrals of the motion. An integral of the motion 
will have the same value for the entire temporal history of the system while an 
initial value or boundary condition is just the value of one of the dependent 
variables of the problem at some specific instant in time. Surely the latter is a 
constant since it is specified at a given time, but an integral of the motion is some 
combination of the dependent variables that is constant for all time. Integrals of 
the motions are exceedingly important to any dynamics problem and knowledge 
of them, as we shall see later, places very useful constraints on the history and 
nature of the system. 
 
 The solution of the second of equations (5.3.1) yields the temporal history 
of the variable θ and can be obtained by direct integration of that equation so that 

∫ θ+=θ
t

0 02 )t(mr
Ldt)t(    .                                    (5.3.2) 

Here the constant  is the initial value of θ at t = 0. We have chosen the initial 
value of the time to be zero, but that is arbitrary and the initial value could have 
been anything. The first of equations (5.3.1) is somewhat more difficult to solve. 
Direct integration gives 

0θ
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Thus the r-coordinate is given as an implicit function of time t(r). This implicit 
function must be inverted to have the same form as equation (5.3.2). The 
parameter  is the second initial value, being the value of r at t = 0. Thus the two 
initial values , and the integrals of the motion [L,E] completely specify the 
motion of the particle. However, to solve a specific problem we must specify Φ(r) 
because the integral, and subsequent inversion of equation (5.3.3), cannot be done 
without knowledge of Φ(r).  

0r
]r,[ 00θ

 
 In any event, we may put rather general limits on the range of solutions 
that we can expect for any given Φ(r). The second of equations (5.3.3) is 
essentially a one dimensional equation in r, so we will define anew potential  
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We can require that the potential energy vanish as ∞→r  as a reasonable 
boundary condition. Thus the kinetic energy is 
     )r(mET ∅−=  .                                  (5.3.5) 
Now if then the force law is repulsive, and there is some minimum 
distance r

0)r( ≥∅
min to which the particle can approach the source before the right hand 

side of equation (5.3.5) would become negative, implying a nonphysical negative 
kinetic energy. This is a plausible result that simply says that a repulsive force 
which increases in strength as its source is approached will eventually stop the 
approach. The total energy for such a system must also always be greater than 
zero. 
 
 For the more interesting case of power law potentials where , we 
can write  
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where k is some positive constant. Interesting things will happen at 
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If power law dependence is such that n > 2, then serves as an upper bound for 
particles with a total energy E < 0.  

0r

 
 For the more pertinent case of gravity where n = 1, then  serves as a 
lower bound inside of which particles may not approach. The physical 
interpretation of this lower bound is simple. If L is not zero, then there is some 
angular motion of the particle as it orbits the central source. However, as it 
approaches the central source, the conservation of angular momentum will require 
an increase in its angular velocity keeping the particle from approaching closer. 
Colloquially one could say that the particle is repelled by centrifugal force. 
Indeed, this part of the pseudo-potential ∅ is often known as the "rotational 
potential". Thus, if the total angular momentum L > 0, then the motion of the 
particle will be kept beyond  . If the total energy E < 0, then there will also be 
an upper bound r

0r

0r
l since the kinetic energy must remain positive. Thus for cases in 

which the total energy E < 0, the particle's motion will be confined between 
. This is the case for virtually all motion in the solar system. 01 rrr ≥≥

 
 
 

 
 
 
 
 
 

67



5.4  The Orbit Equation and Its Solution for the Gravitational Force 
 
 To see more clearly the solution to the equations of motion, let us 
eliminate time as the independent variable from equations (5.1.9). Thus, we 
search for a single equation involving r as a function of θ. We can do this by 
noting that the total time derivative operator can be written as 
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Thus, replacing the time derivatives of equation (5.1.9) by equation (5.4.1) and 
using equation (5.4.2) we can write 
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This is the so called orbit equation since its solution is r(θ), the orbit of the 
particle. This equation is more amenable to solution if we re-write it by 
substituting 

r
1u ≡         ,                                             (5.4.4) 

so that 
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The quantity f(r) or f(l/u) is the force law, which for gravity is 
2

2 GMmu
r

GMm)r(f −=−=    .                             (5.4.6) 

Thus the orbit equation for the gravitational force takes the following relatively 
simple form: 
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This is a second order equation so we can expect two constants of integration in 
the most general solution. As is customary with differential equations of this 
form, we can guess a solution to be 

( ) β+θ−θ= 0cosAu    ,                                  (5.4.8) 
which we can re-write as 
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so long as 
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 The reason for this last transformation is that equation (5.4.9) is the general 
equation for a conic section with a focus at the coordinate origin and an eccentricity e. 
Thus we recover the essence of Kepler's first law, namely that the planets move in 
ellipses with the sun at one focus. Certainly ellipses are conic sections, and should the 
mass of the sun greatly exceed the mass of the earth, then the sun may be regarded as the 
source of the central force of gravity. We have now only to decide which type of conic 
section the orbit will be and on what parameter the kind will depend. 
 
 We can make this determination by generating the total energy from the 
solution to the orbit equation. First differentiate the solution with respect to time 
and after some algebra find the velocity to be given by   

                           
( ) ( ) ( )[ ] .         rP21ePmLv 22222 +−=                (5.4.11) 

 
Now form the kinetic energy and add the potential energy to get 
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It is clear from equation (5.4.12) that the sign of the total energy will determine 
the sign of the eccentricity e and hence the type of orbit namely 
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Thus we see that Kepler's first law of planetary motion implies that the total 
orbital energy of the planets is negative so that the planets are bound. In addition, 
any bound test particle in orbit about the sun will have an elliptic orbit. 



 
 
 
Chapter 5: Exercises 
 
1. Given that a particle is moving under the influence of a central force of the 

form 

32 r
c

r
kf +−=    , 

 
 where k and c are positive constants. Show that the solution to the orbit 

equation can be put in the form 
 

( )
( )αθ+

−
=

cose1
e1ar

2
   , 

 
 which is an ellipse for e < 1 and α = 1. Discuss the character of the orbit for 

 and e < 1. Derive an approximate expression for α in terms of the 
dimensionless parameter γ = [c/(ka)]. 

1≠α

 
2. Discuss the motion of a test particle moving in a potential field of the form 
  

Φ(r) = (α/r) + (β/r3)  , 
 
 in terms of the rotational potential and conservation of energy. 
 
3. A particle moves in a circular orbit of radius under the influence of a 

central force located at some point inside the orbit. The minimum and 
maximum speeds of the particle are and  respectively. Find the orbital 
period in terms of these speeds and the radius of the orbit. 

0r

1v 2v

 
4. Suppose that all the planets move about the sun in circular orbits under the 

influence of an inverse cube force law. Assuming conservation of 
momentum and energy, find a relation between the orbital period and the 
radius of the orbit for the planets. (i.e. a new "Kepler's third law"). 
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The Two Body Problem 
 
 
 
 
 The classical problem of celestial mechanics, perhaps of all Newtonian 
mechanics, involves the motion of one body about another under the influence of 
their mutual gravitation. In its simplest form, this problem is little more than the 
generalization of the central force problem, but in some cases the bodies are of 
finite size and are not spherical. This may complicate the problem immensely as 
the potential fields of the objects no longer vary as the inverse square of the 
distance. This causes orbits to precess and the objects themselves to undergo 
gyrational motion. This latter motion results from external torques produced on a 
non-spherical object interacting with the object's own spin angular momentum. 
While we will not deal with the more difficult aspects of these phenomena in this 
book, it is useful to understand something of the properties of finite rigid bodies 
so that we are equipped to begin to understand some of the difficulties when they 
arise. Thus, we will begin our discussion of the two-body problem with a 
summary of the properties of rigid bodies. 
 
6.1  The Basic Properties of Rigid Bodies 
 
 Let us begin by assuming that the rigid object we are considering is 
located in some orthonormal coordinate system so that the points within the object 
can be located in terms of some vector r

r
. 
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 a.  The Center of Mass and the Center of Gravity 
 
 Let us define two concepts usually taken for granted in mechanics books. 
First the center of mass is simply a 'mass weighted' mean position for the object. 
Again I will give both the discrete and continuous forms so that 
 

∑ ∫∑ ρ==
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iic MdV)r(rmrmr rrr     .                      (6.1.1) 

A second concept that is often confused with the center of mass is the center of 
gravity. This is often defined to be that point where the force of gravity can be 
considered to be acting. Mathematically that would mean that all torques 
produced by gravity would vanish about that point so that 
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In a Cartesian coordinate frame this could be expressed in coordinate form as 
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If one writes this as a linear system of equations for the components of the vector 
defining the center of gravity one gets 
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However, 

0Det =A    .                                            (6.1.6) 
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This means that the equations are singular and there is no unique definition, so 
that the magnitude of  is undefined. Only if we require that gr cg rr

rr
=  and that 

the gravity vector be constant can we define a unique vector which will be equal 
to the vector to the center of mass. Thus, if the gravity field varies over the object, 
the center of gravity is not uniquely defined. In the case in which it is well defined 
it is the same as the center of mass. Physically one can see this by imagining all 
the points within a body where one could attach a hook suspend the object and not 
have it move. Any such points would serve as the center of gravity. The problem 
arises from the cross product and the definition. If one adds to the standard 
definition that the center of gravity is that point about which all the gravitational 
torques vanish regardless of the orientation of the body with respect to the 
gravitational field, then the definition is more tractable. 
 
 b.  The Angular Momentum and Kinetic Energy about the   
  Center of Mass 
 
 Consider that the object is rotating about some point that is fixed with 
respect to an inertial coordinate frame (i.e. one that has no accelerative motions). 
Then the angular momentum of the object will be 
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where 
ii rv rrr

×ω=    .                                          (6.1.8) 
 
Since we are considering the object to be rigid, then all points within the body 
will rotate with the same angular velocity ω. If that were not true some points 
within the body would catch up with others while moving away from still others 
and we would not call the body rigid. This allows us to separate the rotational 
motion from the positions of points within the object. Thus by making use of the 
vector identities from Chapter 1 we may write the angular momentum of the 
object as 
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Writing out equation (6.1.9) for each component of L
r

we see that equation (6.1.9) 
can be re-written as 

ω•=
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IL     ,                                         (6.1.10) 
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where I is known as the moment of inertia tensor and has components 
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 Now the kinetic energy of a rotating object about some fixed point is just 
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Making use of the so-called vector triple product 
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we can write this as  
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This can be expressed in terms of the moment of inertia tensor by replacing the 
angular momentum with equation (6.1.10) so that 
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here  is a unit vector pointing in the direction of the angular velocity vector and 
the quantity in square brackets is then just a property of the body and is called the 
moment of inertia about the axis . Clearly the moment of inertia tensor, I , will 
have the symmetric property 
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jiij II =    .                                            (6.1.16) 
 
 c.  The Principal Axis Transformation 
 
 Calculations involving the moment of inertia tensor would be a lot easier 
if there were some coordinate frame in which the tensor were diagonal. It is clear 
from equation (6.1.11) that the tensor is a symmetric tensor so that the off 
diagonal terms satisfy 
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Thus in order to make the tensor diagonal we need only transform to a coordinate 
frame wherein the off-diagonal elements are zero. We saw in Chapter 2 that one 
could reach any orthonormal coordinate frame from any other through a series of 
three coordinate rotations about the successive coordinate axes. This is 
represented by three independent parameters in the transformation (i.e. the 
rotation angles). Since we have three constraints to meet (i.e. making the off-
diagonal elements zero), it is clear that this can be done. Another way of 
visualizing this transformation is to scale the unit vector  by n̂ I  so that 
 

n̂I=ξ
r

   .                                           (6.1.18) 
In terms of the components of this vector the expression for the moment of inertia 
given by equation (6.1.17) becomes 
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which is the general equation for an ellipsoid. Now there always is a coordinate 
frame aligned with the principal axes of the ellipsoid where the general equation 
for the surface becomes 
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This coordinate system is known as the principal axis coordinate system and it is 
the coordinate frame in which the off-diagonal elements of the moment of inertia 
tensor vanish. The diagonal elements are known as the principal moments of 
inertia, as they are indeed the moments of inertia about the principal axes. They 
are basically the eigenvalues of the moment of inertia tensor and so can be found 
from the determinental equation  
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which is nothing more that a polynomial in I. The principal moments of inertia are 
the roots of that polynomial.  
 
 The moment of inertia is an important concept if one is interested in the 
motion of an object. For example, it is essential for the understanding of 
precession. In the rotational equations of motion for an object the moment of 
inertia plays the role taken by the mass in the dynamical equations of motion of a 
system of particles. 
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6.2  The Solution of the Classical Two Body Problem 
 
 In principle we have assembled all the tools and concepts needed to solve 
some very difficult mechanics problems. To illustrate the methods needed to 
determine planetary motion we will consider the classical two body problem of 
celestial mechanics. We know immediately that we will have two second order 
vector differential equations to solve for the motion of both objects. Each of these 
equations will require six independent constants to specify the complete solution. 
Therefore we may expect to have to find a total of twelve constants of the motion 
before we can consider the problem solved. 
 
 a.  The Equations of Motion 
 
 In order to find the equations of motion for two bodies moving under their 
mutual gravity we shall follow much the same procedure that we did for a central 
force. In order to keep the problem simple we will further assume that the 
potential of each body is that of a point mass ml and m2 respectively. The kinetic 
and potential energies of the system are then 
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where  and  are position vectors to the objects. These vectors are linearly 
independent so they form a suitable set of generalized coordinates in which to 
formulate the Lagrangian equations of motion. Now the elements that enter into 
the Lagrangian equations of motion are 
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where 

jiij rrd
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−≡    .                                         (6.2.3) 
This leads to two vector equations of motion for the two bodies: 
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If we add these equations we get  
0rmrm 2211 =+ &&r&&r     ,                                     (6.2.5) 

which can be integrated immediately twice with respect to time to yield 
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Note that A

r
 and B

r
 are vectors and so contain six linearly independent constants. 

From the definition of the center of mass [equation (6.1.1)] we can write 
BtArc
rrr

+=M    ,                                        (6.2.7) 

which says that at time t = 0 the center of mass was located at )/B( M
r

and was 
moving with a uniform velocity )/A( M

r
. Thus we have immediately found six of 

the twelve constants of the motion. They are the location and velocity of the 
center of mass.  
 
 Since a coordinate frame that undergoes uniform motion is an inertial 
coordinate frame (i.e. no accelerations) the laws of physics will look the same in a 
coordinate frame moving with the center of mass as they did in our initial 
coordinate system. Therefore we will transform to an inertial coordinate frame 
with the origin located at the center of mass. In such a coordinate system 
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We may use this constraint to decouple each of equations (6.2.4) from the other so 
that 
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We can reduce these further by introducing a new vector that runs from one object 
to the other so that 

21 'r'rr rrr
−=     .                                        (6.2.10) 

Then by subtracting the second of equations (6.2.9) from the first we get 
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This is equivalent to making another coordinate transformation to one of the 
objects since r

r
 is simply the distance between the objects. However, this reduces 

the problem to the one we solved in the previous chapter, since the form of 
equation (6.2.11) is the same as equation (5.1.3). Thus the solution of the two 
body problem is equivalent to the solution of a central force problem where the 
potential is the gravitational potential and the source of the force can be viewed as 
being located in one of the objects.  
 
 Thus we may jump directly to the solution of the problem given by 
equations (5.4.9 -5.4.12) and write 

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
=

=

θ−θ+
=

2/1

2

2

2

2
0

m)mG(
EL21e

mG
LP

)cos(e1[
Pr

M

M
    .                               (6.2.12) 

Here we have found three more constants in E, L, and 0θ . We knew that the 
angular momentum and the energy would have to be two of the constants, and 
that an initial value of  is involved should be no surprise. While equations 
(6.2.12) introduce the angular momentum, they only specify its magnitude, and 
we know from the central force problem that the vector is an integral of the 
motion. That is what insures that the motion is planar. Therefore specifying the 
angular momentum specifies two additional linearly independent components (in 
addition to the magnitude). The last remaining constant is the r

0θ

o that appears in 
equation (5.3.3) and specifies the location of the particle in its orbit at some 
specific time. Like , it can be regarded as an initial value of the problem. Thus 
we have all six remaining constants of the motion containing sufficient 
information to uniquely determine the position of each object in space as a 
function of time. 

0θ

 
 b.  Location of the Two Bodies in Space and Time 
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 By choosing a coordinate system with its origin at one of the bodies, we 
are really only concerned with describing the motion of one of the objects with 
respect to the other. While equations (6.2.12) indicate the shape of the orbit, they 



say nothing about how the object moves in time. To describe the motion, we shall 
have to make use of Kepler’s second law, the constancy of the areal velocity. To 
do this we shall have to introduce some new terminology.  
 
 As an example, let us consider the motion of an object about the sun. 
Since we want to describe the motion of an object in its orbit, we shall need some 
means to define specific locations in the orbit as reference points and parameters 
to measure angular positions. We shall presume that the orbit is elliptical with the 
sun at one focus in accord with Kepler's first law, Thus there will be a point in the 
orbit where the object makes it closest approach to the sun, This point is known as 
perihelion since, in general, the point of closest approach to the source of the 
force-field is known as peri*** , where *** is the Greek stem appropriate to the 
object. This point is always located at one end of the semi- major axis of the 
ellipse. In the case of orbits about the sun, the other end of the semi-major axis is 
known as aphelion and is the position furthest from the sun. Since the origin of 
the coordinate system is at the source of the attractive force, the location of the 
object in its orbit can be defined by an angle measured from the semi-major axis -
specifically from the point of perihelion (see Figure 6.1) in the direction of the 
object's motion. This angle is called the true anomaly, and will be denoted by the 
Greek letter ν. Determining it as a function of time essentially solves the problem 
of finding the temporal location of the object. 
 
 Let us choose to start measuring time from perihelion passage so that the 
true anomaly is zero when t = 0. From the solution to the orbit equation [equation 
(6.2.12)] we see that t = 0 will occur when 0θ=θ  so that' 

0θ−θ=ν    .                                         (6.2.13) 
We may then write the orbit solution as 
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where a is the semi-major axis of the ellipse.  
 
 Now we shall appear to digress to some geometry and relate each point on 
the elliptical orbit to a corresponding point on a circle with a radius equal to the 
semi-major axis and whose center is located at the center of the ellipse (again see 
Figure 6.1). An ellipse is simply the projection of a circle that has been rotated 
about its diameter through some angle ψ. Now imagine points [xc ,yc] located on 
the circle and corresponding points [xe,ye] located on the ellipse, For , ec xx =
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where a and b are the semi-major and semi-minor axes of the ellipse respectively. 
Since cosψ is the same for all corresponding )xx( ec =  points on the circle and 
the ellipse, this result must hold for all such points. The Pythagorean Theorem 
assures us that 
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where f is the distance from the center to the focus of the ellipse. From the 
equation for the ellipse [see equation (6.2.14)], we can write for ν = 0 that 
 

)e1(a)e1/()e1(afar 2 −=+−=−=     ,                   (6.2.17) 
which becomes 

2/122 )ba(aef −==     .                               (6.2.18) 
 
If we define an angle E measured from perihelion to a point on the circle [xc ,yc] 
as seen from the center of the circle, then 
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 Using these definitions, , and equation (6.2.18), equation 
(6.2.16) becomes 

)e1(ab 222 −=

)]Ecos(e1[ar −=    .                                      (6.2.20) 
 
The angle (E) is called the eccentric anomaly. Now we are in a position to relate 
the areal velocity of the particle along the elliptic orbit to the areal velocity of an 
imaginary particle along the circle.  
 
 Imagine such a particle moving in a circle with a radius equal to the semi-
major axis (a) of the ellipse. Both particles would have the same orbital period 
since that depends only on the semi-major axis. However, the imaginary particle 
moving on the circle would move along its orbit at a uniform rate of speed. 
Therefore let us define its angular rate of speed as 
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where P is the orbital period. Here M is the angular distance along the circle that 
the imaginary particle would have moved during the time t specifying the position 
of the real particle on the ellipse. Thus 

ntM =   .                                            (6.2.22) 
 

The angle M is called the mean anomaly. 
 

 
Figure 6.1 shows the geometrical relationships between the elliptic 
orbit and the osculating circle. The areas swept out by radius vectors 
to points on the ellipse and the circle are shown as the shaded areas. 
By relating the sides of the bounded figures, we may relate the area 
swept out in the ellipse to the area swept out on the circle of a 
uniformly moving object. This is the source of Kepler's equation. 

 
We may relate the mean anomaly to the eccentric anomaly by the following 
argument. From the law of areas (Kepler's second law) 
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where A is the area swept out by the radius vector in time t while πab is just the 
area of the ellipse. Now, since each point on the circle is simply a scaled point on 
the ellipse, the areas in equation (6.2.23) scale by (a/b) so that 
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where B is the dot-dashed area of Figure 6.1 so that 
 

)Esin(eEM −=    .                                       (6.2.25) 
 
This expression is known as Kepler's equation since it specifically utilizes 
Kepler's second law to relate the mean anomaly to the eccentric anomaly. We may 
use equation (6.2.20) and the equation for an ellipse [equation (6.2.14)] to relate 
the eccentric anomaly to the true anomaly. By equating the value of r given by 
each of these equations, we get 
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which after some trigonometry becomes: 
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Equation (6.2.27) and Kepler's equation [equation (6.2.25)] , therefore, relate the 
time since perihelion passage to the true anomaly or angular position of the real 
object in its elliptic orbit. The conservation of angular momentum leads to similar 
results for hyperbolic and parabolic orbits. Specifically for hyperbolic orbits we 
have 
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while for parabolic orbits we get 
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The quantity n, which is the mean daily motion, has the same physical 
interpretation for both the elliptic and hyperbolic orbits, but it is defined slightly 
differently for parabolic orbits. 
 
 From Newton's laws of motion and gravitation we can write the mean 
daily motion for objects in elliptic orbit as 

2/13 )aG(P2n M=π=   ,                               (6.2.30) 
 
where M is the sum of the masses of the two bodies. However, in the solar system 
we can use the earth's orbital parameters as units to define the motion of objects 
about the sun and express n in those units and a constant k, known as the 
Gaussian constant as 

2/13])a/a/()[(kn ⊕= uM/M radians/day   .             (6.2.31) 
 
Actually the value of k is taken to be 
 

k=0.01720209895  radians/day  ,                           (6.2.32) 
 
and its value is used to define the astronomical unit. Generally one hears that the 
astronomical unit is the semi-major axis of the earth's orbit by definition, but this 
is not strictly correct. It is k that is fixed with units of mass measured in solar 
masses, time in ephemeris days, and the unit of length is the astronomical unit by 
definition. Indeed, using the modern value for the mass of the earth (in units of 
the solar mass) one would find that the semi-major axis of the earth's orbit is 
about ( ) astronomical units. Brouwer and Clemence71031 −×+ 5 point out that 
Kepler's third law isn't strictly correct if there is a massive third body in the 
system so the fact that the semi-major axis of the earth's orbit is not exactly one 
astronomical unit should not be a bother. As long as the unit of length is well 
defined by equation (6.2.31), we may use it to determine the mean angular motion 
for objects in the solar system. 
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 The analogous expressions for hyperbolic and parabolic orbits are 
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Here ah is called the semi-transverse axis of the hyperbola and q is known as the 
pericentric distance which is simply the distance of closest approach to the second 
object. In the solar system the sun's mass so dominates that M/Mu is effectively 
unity. Thus if we know the type of orbit and orbital scale-length (i.e. semi-major 
axis for the ellipse, semi-transverse axis for the hyperbola, or pericentric distance 
for the parabola) we can determine the mean daily motion from equations (6.2.31 
- 6.2.33). Further knowledge of the time since perihelion passage allows the 
calculation of the mean anomaly M. That and the eccentricity enable us to 
calculate the eccentric anomaly through the solution of Kepler's equation. 
Algebra, in the form of equations (6.2.27-6.2.29), allows for the calculation of the 
true anomaly and the radial distance r from the origin of the coordinate system. 
This, then completely specifies the location of the object in its orbit. Involved as 
this process is, it is relatively straightforward except for the solution of Kepler's 
equation. 
 
 c.  The Solution of Kepler's Equation 
 
 Equations of the form of equation (6.2.25) are known as transcendental 
equations and, in general do not have closed form solutions. Thus, in order to 
solve the problem of orbital motion, we will be forced to a numerical solution of 
Kepler's equation. Much has been written on effective and general numerical 
procedures for such a solution and we will not go into all of those details here. 
Rather we shall adapt a common numerical procedure known as Newton-Raphson 
iteration. Assume that we have an equation of the form 
 

0)x(f =   ,                                         (6.2.34) 
 
and we wish to find that value of x for which the equation is satisfied. A 
procedure for accomplishing this is to guess an initial value x(0) and use the 
following expression to improve it. 
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The process is repeated until 

ε≤
−+

)k(

)k()1k(

x
]xx[   ,                                     (6.2.36) 

where ε is some predetermined tolerance. The value of x for which ε = 0 is known 
as the 'fixed-point' of the iteration scheme and a rather large body of knowledge 
has been developed concerning such schemes. The specific one given in equation 
(6.2.35) has the virtue of normally converging quickly to a fixed point and is 
simple. It is called Newton-Raphson iteration and graphically amounts to 
extending a tangent to the function to the point where it intercepts the x-
axis and using that value of x as x

]x[f )1k( +

(k+l) .Clearly, when f(x) is zero, x is a fixed 
point. The application of the method to Kepler's equation yields 
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One of the problems with the Newton-Raphson scheme is that it doesn't always 
converge. This is the case with equations (6.2.37). There are values of the 
eccentricity and mean anomaly for which this iteration scheme will not yield an 
answer. However, this occurs only for a small range of M near perihelion and 
very large eccentricities (see Chapter 6 exercises). It will always work for objects 
in elliptical orbits in the solar system except for some long period comets and 
these orbits may be handled in another manner. Thus, for simplicity, we will leave 
the discussion of the solution of Kepler's equation with the Newton-Raphson 
iteration scheme. Those who wish more details on the subject should consult 
Green6. 
 
6.3  The Orientation of the Orbit and the Orbital Elements 
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 The solution to the two body problem consists in describing the motion of 
both bodies in an arbitrary coordinate frame. Since the two bodies are described 
by two vector differential equations of second order, there will be twelve 
constants required for that description. Six of those twelve are required to 
describe the motion of the center of mass of the system. Three more are required 
to locate one object in its orbit relative to the other. The remaining three are 
required to specify the orientation of the orbit with respect to the arbitrary 
coordinate frame. If we assume that the coordinate frame is a spherical coordinate 



frame, then we can use the Euler angles as defined in Chapter 2 to define the 
orbital orientation in that frame. The coordinate frame will have a fundamental 
plane and a direction within that plane that defines how azimuthal angles will be 
measured. For most astronomical coordinate systems of relevance to celestial 
mechanics, that direction is toward the first point of Aries (i.e. the vernal equinox) 
and the fundamental plane will be either the ecliptic or the equator of the earth 
(see Chapter 2). 
 
 Figure 6.2 shows the orbit of an object located in the reference coordinate 
frame and it bears a marked similarity to the last of Figures 2.2. In Figure 2.2 φ 
described the distance from the preferred direction to the line of intersection of 
the two planes known as the line of nodes. In celestial mechanics, this is known as 
the longitude of the ascending node where the notion of "ascending" refers to that 
node where the motion of the object carries it toward positive Z. In the solar 
system, this means that the object would be moving from south to north in the 
sky. We will use Ω to denote this angle. The second of the Euler angles in Figure 
2.2 is θ and measures the angle by which one plane is inclined to the other. In 
celestial mechanics this is known as the angle of inclination and is usually 
denoted by i. The last of the Euler angles in Figure 2.2 is ψ and is used to denote a 
particular point in the inclined plane. For orbital mechanics the most logical point 
in the orbit is the pericenter. Its location is then designated by the angle o called 
the argument of the pericenter. Thus the three defining angles of the orbit are      
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Sometimes the argument of the pericenter is replaced by the strange angular sum 
(o + Ω) which is called the longitude of the pericenter and is denoted by 
 

Pericenter  theof Longitude The ≡+Ω=ϖ o   .                  (6.3.2) 
 
Thus we have defined the three remaining constants required by the equations of 
motion specifying the orientation of the orbital plane. In the solar system, the 
center of attraction is usually the sun and so the pericenter becomes perihelion 
and the fundamental plane is usually the ecliptic. 
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 Figure 6.2 shows the coordinate frames that serve to define the 

orbital elements specifying the orientation of the orbit with 
respect to the ecliptic coordinate system. 

  
 We have repeatedly said that there are twelve constants required to 
uniquely specify the motion of one object about another, but that six of them are 
concerned with the motion of the center of mass of the pair. Since this motion is 
uniform, these six constants are usually ignored when discussing the orbit of the 
object. The remaining six constants constitute the elements of the orbit and can be 
broken into two sets of three. The three that define the orientation of the orbit as 
defined above are taken directly as orbital elements. However, the remaining 
three that specify the size and shape of the orbit as well as the object's location in 
it at some time can be specified in various ways. We found in Chapter 4 that the 
angular momentum and total energy are integrals of the motion and will 
determine the size and shape of the orbit. However, they are not directly 
observable quantities so that a different set of constants more directly related to 
the geometry of the orbit is usually chosen to represent the orbit. These are the 
semi-major axis and the eccentricity. Finally to represent the position of the object 
within its orbit we specify the time when the object is at pericenter, or for the 
solar system, the time of perihelion passage T0. Now in developing the equations 
describing the motion of the object in its orbit, we took the time of perihelion 
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passage to be zero. Thus (t) in equation (6.2.21) and equation (6.2.22) should be 
replaced by 

0Ttt −=    .                                             (6.3.3) 
 
The six constants specifying the motion of the object are known as the elements 
of the orbit of the object and are: 
 
    The Semi-major axis of the orbit ≡a
    The Orbital Eccentricity ≡e
    The Time of Perihelion Passage              (6.3.4) ≡0T
    The Argument of Perihelion ≡o
    The Longitude of the Ascending Node ≡Ω
     i ≡The Inclination of the Orbit        . 
 
While we have now located the object in its orbit, we have yet to find it in the sky. 
 
6.4  The Location of the object in the Sky 
 
 The location of the object in the sky involves nothing more than the 
transformation from the coordinate system specifying the location of the object in 
its orbit to the coordinate system of the observer. The specific nature of this 
transformation depends on the relative location of the source of the attractive 
force and observer. For example, we will consider the object to be in orbit about 
the sun and the observer located on a spinning earth. Since the heliocentric orbital 
elements are generally referred to the ecliptic, the first part of the transformation 
will involve expressing the components of the radius vector to the object in 
ecliptic coordinates. Then we will transform to the equatorial (Right Ascension-
Declination) coordinate system. This is followed by shifting the origin of the 
coordinate system to the center of the earth and finally the astronomical triangle 
may be solved to express the result in the observer's Alt-Azimuth coordinate 
system. 
 
 Imagine a Cartesian coordinate system with its origin coinciding with the 
sun, the z-axis normal to the orbit plane, and the x-axis passing through 
perihelion. In such a coordinate system the components of the radius vector to the 
orbiting object are 
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We wish to transform this coordinate frame to the equatorial coordinate frame. 
Therefore we first carry out the inverse Euler rotational transformations that will 
align the x-axis with the direction to the vernal equinox and the z-axis normal to 
the plane defining the orbital elements (usually the ecliptic plane). This will yield 
the components of the vector in ecliptic coordinates as 
 

r)()()('r zxz
rr

oTTT PPP iΩ=   .                               (6.4.2) 
 
Now to express the coordinates in Right Ascension-Declination coordinates, we 
must align the defining planes of the two coordinate systems. This can be 
accomplished by a rotation about the x-axis, pointing toward the vernal equinox, 
through an angle -ε where ε is the angle between the ecliptic and equatorial 
planes. Note that a rotation through a negative angle is equivalent to the inverse 
transformation of the positive rotation. Thus the radius vector can be expressed in 
heliocentric equatorial coordinates as 

'r)("r x
rr

ε= TP     .                                         (6.4.3) 
 
Now the origin of the coordinate system must be transferred to the earth. This is a 
vector transformation and is accomplished by simply subtracting a heliocentric 
vector to the earth from the heliocentric vector locating the object. Thus a radius 
vector from the earth to the object will have geocentric equatorial coordinates of 
 

⊕−Ωε=ρ Xr])()()()([ zxzx
rrr

oTTTT PPPP i    .                (6.4.4) 
 
Here the vector  is the heliocentric equatorial radius vector to the earth. ⊕X
 
 Having arrived at the earth, we need only correct for the observer's 
location on the earth. Remember that the x-axis is still pointing at the vernal 
equinox and the z-axis toward the north celestial pole. Thus to get to the local alt-
azimuth coordinate system, we must align the x-axis with the local prime 
meridian (pointing north) and then bring the z-axis so that it points toward the 
zenith. The first of these transformations can be accomplished by rotating about 
the z- axis (polar axis) through the local hour angle of the vernal equinox, but this 
is just the local sidereal time by definition. At this point the x-axis will lie in the 
plane of the prime meridian, but pointing south (in the northern hemisphere) so 
we must rotate through an additional angle of 180°. If the object happens to be 
close by, it may finally be necessary to transfer the origin from the center of the 
earth to the observer by subtracting the radius vector from the center of the earth 
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to the observer's location. Following this by a rotation through the co-latitude of 
the observer will bring the z-axis so that it points toward the zenith. Thus the 
complete transformation from the orbital coordinates of equation (6.4.1) to the 
true topocentric coordinates of the observer can be written as 
 

{ } ⊕⊕ −−Ωεδ−π=ρ rXr])()()()([)]t(h[])2[(' zxzxzy
rrrr

oTTTT PPPPPP i  .   (6.4.5) 
 
If the transformation from the center of the earth to the true topocentric 
coordinates is carried out as indicated by equation (6.4.5), the vector ⊕r

r  has only 
an x-component equal to the radius of the earth for the observer's latitude and 
longitude. The components of the vector from the observer have the following 
components in the Alt-Azimuth coordinate system: 
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which translates into the Alt-Azimuth coordinates of, 
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Thus we have completely described the motion of an object around the sun to the 
point where we can locate the object in the sky. In the next chapter we shall 
consider the inverse problem of determining the orbital elements from 
observation. 
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Chapter 6: Exercises 
 
1. Given a body which is bounded by the surface 
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  where   a > b > c ,   and  has  a  density  distribution .const)r( =ρ   Find the 

principal moments of inertia and the principal axes of the body. 
 
2. Integrate the equations of motion for the two-body problem to show that 
 
           e = (1+2EL2/mk2)1/2   . 
 
3. Assuming the earth's orbit to be circular and that meteors approach the sun 

in parabolic orbits, between what limits on their relative speed will they hit 
the earth if the gravitational attraction of the earth is neglected? 

 
4. Consider two particles orbiting about one another and having masses m1 

and m2. If the force between the two is given by 
 
    )rr(kF 21

2 rrr
−= , 

 
 show that the orbit of one particle about the other is an ellipse with one 

particle at the center of the ellipse. 
 
5. A rocket is detected approaching Chicago at a range of 3200km, and an 

altitude of 160km above sea level. If the velocity of approach is 24800km/hr 
and the motion is parallel to the surface of the earth, decide if the rocket will 
hit Chicago. Assume that the earth is spherical and that coriolis forces and 
atmospheric drag are negligible. What are the values of r and ν at the instant 
of detection? If it should miss, how much will it miss by? If the azimuth at 
the time of detection is 15o, where is the probable launch site? 
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6. Find the Right Ascension, declination, altitude and azimuth for Mars as seen 
from The Ohio State University campus on March 1, 1988 at 3:00AM EST. 
List all additional constants and their source necessary to solve this 
problem. 

 
 
7. If one has an iterative function that can be written as 
 
                          x(k+1) = T[f(x(k))] , 
 
 then it will converge to a fixed point if and only if 
 

 int)pofixed(xxxx1
x

)k( −<<∃∀<
∂
∂ℑ   . 

 
 Find the range of values of e and E for which Newton-Raphson iteration 

will converge to a solution of Kepler's equation. 
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7 
 
 
 

The Observational Determination of 
Orbits 

 
 
 In the last chapter we saw how to find the position on the sky of a object 
given the parameters that describe the orbit of the object. That is about half of the 
fundamental problem of celestial mechanics. The other half is the reverse. 
Namely, given some observational information about the motion of the object, 
one would like to determine the orbital elements that specify the motion. This, 
and Chapter 6, enable one to predict the future location and motion of the object. 
These two parts of the description of orbital motion constitute the solution of the 
primary problem of celestial mechanics. 
 
 It is clear from what we have done in Chapters 4 and 5 that the solution of 
the equations of motion for n-bodies requires 6n constants of integration. For two 
bodies half of the constants are involved in describing the motion of the center of 
mass, while the remaining six specify the location of a particle in its orbit and the 
orientation of that orbit with respect to a specified coordinate system. Thus, for 
objects in orbit about the sun we have only the six orbital elements that represent 
the six linearly independent constants required for the solution of the equations of 
motion. In order to determine these six linearly independent orbital elements, we 
will need six linearly independent pieces of information. There are many different 
forms that this information may have. For example, one might have the position 
and velocity at some instant in time. These two vectors clearly provide six 
independent pieces of information as they constitute the classical initial values for 
the integration of the Newtonian equations of motion. However, they are not the 
quantities traditionally available to the astronomer. Classically, one observes the 
position of an object as seen projected against the celestial sphere. Such an 
observation is comprised of two angular coordinates and the time of observation. 
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This represents two linearly independent pieces of information so that one would 
need three such observations in order to determine the orbital elements. In 
principle, one might also be able to measure the radial velocity with respect to the 
earth, but this is only one additional independent piece of information. Thus, if 
one had two positions and the radial velocities of the object at those positions, the 
problem would be determined.  
 
 In practice, all observations are subject to error and this will be reflected in 
errors in the orbital elements. Therefore, the accurate determination of orbital 
elements will make use of a large number of observations combined in such a way 
as to reduce the resultant error of the final result. The combination of the 
observations usually employs some principle such as Legendre's principle of least 
squares or more contemporarily, the related maximum likelihood principle. 
However, all of these methods require the relationship between the orbital 
elements to be determined and the particular type of observations to be specified. 
Since this relationship is, in general, nonlinear, we shall consider several different 
and specific cases. As an example and for traditional reasons, we shall consider 
the problem of determining the orbital elements for an object in orbit about the 
sun. However, the approaches are much more general and are applicable for 
determining the orbits of objects revolving about most any object where the 
potential is that of a point mass. 
 
7.1  Newtonian Initial Conditions 
 
 In Chapters 3 and 5 we found that the two body problem will have two 
integrals of the motion, the angular momentum and the total energy. Integrals of 
the motion are useful for our purpose since they are indeed constant for all parts 
of the orbit and therefore apply as constants for all possible observations. They 
represent constraints that all observations must satisfy, and they can be directly 
related to the orbital elements. Therefore we will begin by discussing what they 
can tell us about positions and velocities and vice versa. Let us assume that we 
know a position and velocity at some instant in time. This is essentially the initial 
value information that would be needed for the direct solution of the Newtonian 
equations of motion. The definition of angular momentum requires that 
 

l
r

&rr ˆsinvrmLrr θ==×    ,                                 (7.1.1) 
 
and the angular momentum is an integral of the motion. From the solution of the 
two body problem [see equations (6.2.12), and (6.2.14)] and the properties of an 
ellipse we know that 
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)e1(amGLP 222 −== M    .                             (7.1.2) 
 
If we combine this with the expression for the velocity of an object moving in a 
central force field [i.e. equation (5.4.11)], we get 
 

⎥⎦
⎤

⎢⎣
⎡ −==•

a
1

r
2Gvrr 2 M&r&r     .                                  (7.1.3) 

 
This is often called the energy integral since it is basically derived from the 
conservation of energy. Older books on celestial mechanics refer to it by the old 
Latin name vis viva Integral. It immediately supplies us with a value for the semi-
major axis. 

)rvG2(rGa 2−= MM        ,                        (7.1.4) 
which is one of the orbital elements we seek. 
  
 Now we may obtain the value of the orbital eccentricity e by using equation 
(7.1.1) to replace the value of (L/m) in equation (7.1.2) and obtain 
 

θ−−=θ−= 222 sin)a/r)](a/r(2[1]aG/)sinrv[(1e M       .   (7.1.5) 
 
With the semi-major axis, a, and the orbital eccentricity, e, we can turn directly to 
the equation for the orbital ellipse (6.2.14) to obtain the cosine of the true anomaly 
as  
              .  (7.1.6) θ−θθ−=−−=ν 22/1222 cossin)cose(1)e1)(r/a(cose
 
The right hand side of equation (7.1.6) is obtained with the aid of equation (7.1.7). 
The proper quadrant for ν may be found from the sign of the radial velocity, 

, which we get by differentiating equation (6.2.14) with respect to time, 
noting that  can be obtained from the areal velocity [see equations (5.2.2, 3)] as 
L/mr

ν= cosvr&
ν&

2, and that P may be eliminated with the aid of equations (7.1.1) and (7.1.2) so 
that 

⎪⎭

⎪
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⎫

θ−−θ+θθ=

θ−=θ=ν

}]cos)e1([sin{sincos

cot)e1)(r/a()L/cosPmv(sine
2/1222

2

         
.            (7.1.7) 

  
 The true anomaly ν and eccentricity, e, allow us to directly calculate the 
eccentric anomaly (E) from equation (6.2.27) and, by means of Kepler's Equation 
[equation (6.2.25)], the mean anomaly (M). The mean anomaly, in turn, allows the 
calculation of the time of perihelion passage since the mean daily motion (n) 
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depends only on the period which, in turn, depends only on the semi-major axis so 
that 

)EsineE(a)Ga(tn)EsineE(tT 2/1
110 −−=−−= M    .          (7.1.8) 

 
Here tl refers to the time at which the observations of the position and velocity are 
made. Thus equations (7.1.4), (7.1.7), and (7.1.8) determine the shape of the orbit 
and the orbital element that locates the object in its orbit. The information that has 
been used to determine these orbital elements is just the magnitude of the angular 
momentum and energy and the angle between the position and velocity vector. 
These are three linearly independent pieces of information and they determine 
three orbital elements. Clearly the energy and angular momentum determine the 
shape and size of the orbit as they are integrals of the motion and are constants for 
all points in the orbit. Taken together with the angle between the position and 
velocity vectors, they are sufficient to locate the particle in that orbit.  
 
 The remaining three orbital elements specify the orientation of the orbit 
and must be determined from information uniquely related to its orientation. The 
angular momentum vector always points normal to the orbit and, being an integral 
of the motion, is sufficient to specify the orbit's orientation. A unit vector pointing 
in the direction of the angular momentum vector contains all the information 
necessary to specify the orbital orientation. It can be specified in terms of the 
position. and velocity vectors as 

θ

×
==

sinrr
)rr(

L
Ln̂

&rr
&rrr

  .                                      (7.1.9) 

Thus, the components of that vector in any particular coordinate system will 
specify the orientation of the orbit in that coordinate system. The components in 
the ecliptic coordinate system, yield two of the remaining three orbital elements 
from  
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  .                              (7.1.10) 

 
The remaining orbital elements can be determined by considering a unit vector 

pointing toward the ascending node and its scalar and vector products with the 
position vector r which are 

                               

)ˆ(η
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The x-component of the vector cross product is 
 

)sin()sin(sinrsinr)rˆ( zx o+νΩ=Ω=×η ir     ,                (7.1.12) 
 
which along with the scalar product yields 
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i      .                     (7.1.13) 

 
These two equations are sufficient to unambiguously determine (ν + o) and hence 
the last remaining orbital element, the argument of perihelion o. 
 
 Thus we have seen how, given what amount to initial conditions of the 
motion, can be used to determine the orbital elements. It is important 
to recognize the type of information available and which orbital elements are 
constrained by that information. Magnitudes of position and velocity vectors 
specify the magnitudes of the orbital energy and angular momentum. Since these 
are integrals of the motion, they will determine the size and shape of the orbit. 
The constancy of the angular momentum vector in space will essentially 
determine the orientation of the orbit. A combination of both is required to locate 
the object is its orbit. All methods of determining orbital elements will utilize the 
observed information in this way. While astronomers rarely are able to determine 
position and velocity vectors at a given instant, most methods of orbit 
determination rely on estimating this information from the information that is 
available. 
 

)]t(r),t(v[ 11
rr

7.2  Determination of Orbital Parameters from Angular positions Alone 
 
 The traditional problem of celestial mechanics involves the determination 
of the orbital elements given the angular position on the celestial sphere at various 
times. This information takes the form of pairs of celestial coordinates in some 
known coordinate system. Since there are six constants of the motion, we will 
need at least six independent observational constraints or three observations of 
coordinate pairs. To understand conceptually how this can work, let us consider a 
method that dates back at least to Johannes Kepler. 
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 a. The Geometrical Method of Kepler 
 
 This method determines the planetary orbit with respect to the earth's 
orbit. In away this is true for all methods since the scale of the solar system is set 
by the value of the astronomical unit which is generally assumed to be known. 
However, it is interesting that this method makes no use of physics and only 
assumes that both the earth and planet are in orbit about the sun. Indeed, this is the 
method by which Kepler discovered his laws of motion. One begins by 
determining the sidereal period of the planet, the time required for the planet to 
return to the same point with respect to the stars as seen in an inertial frame. This 
is done by measuring the synodic period directly. The synodic period is simply 
the length of time required for the planet to return to the same place in the sky as 
seen from the earth (see Figure 7.1). 
 

 
Figure 7.1 shows the orbital motion of a planet and the earth moving 
from an initial position with respect to the sun (opposition) to a 
position that repeats the initial alignment. This associated time 
interval is known as the synodic period of planet p with respect to 
the earth. The concept of a synodic period need not be limited to the 
earth and another planet, but may involve any two planets. 
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 Let this period of time be Ps. Now the angular distance traveled by the 
earth during this time will just be (2π/P⊕)×Ps where P⊕ is the sidereal period of 
the earth. During the same interval of time the planet will have traveled an 
angular distance (2π/Pp)×Ps. However, since the planets have returned to the same 
relative position in the sky with respect to the sun, the angular difference in the 
distance traveled must be 2π. Therefore 

sp P
2

P
2

P
2 π

=
π

−
π

⊕
     .                                         (7.2.1) 

 
Figure 7.2 shows the position of the earth at the beginning and 
end of one sidereal period of planet p. If we assume that the 
distance of the earth to the sun as well as the three angles γi 
are known at each position, then the determination of the 
remaining parts of the quadrilateral, including the distance to 
the planet, is a matter of plane trigonometry. 
 

 Thus careful observation of the synodic period will lead to the 
determination of the sidereal period of the planet. While it is true that elliptic 
orbits will cause difficulties with this approach, it is possible to wait a number of 
synodic periods until the planet returns arbitrarily close to a given position in the 
sky and then the method will give the correct result in spite of the orbital 
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eccentricity. While this is not strictly an angular position, it is the measurement of 
a single item, the synodic period, which then specifies the sidereal period.  
 
 Now simply observe the position of the planet at the beginning and end of 
one sidereal period. It will be seen against the stellar field from two different 
vantage points as the sidereal period of the planet will not in general be 
commensurate with that of the earth. Thus the planet will lie at the vertex of a 
quadrilateral formed by the planet, sun and two positions of the earth (see Figure 
7.2). Assuming that the orbit of the earth is known, then two sides and three 
angles of the quadrilateral are known. This enables the remaining sides and 
diagonals to be determined. If this procedure is carried out throughout the entire 
orbit of the planet, its entire orbit with respect to the earth can be measured. If the 
detailed shape of the orbit is known, then clearly the orbital elements that describe 
the orbit are specified. Much more than the minimum three pairs of observations 
have gone into this determination, but much less has been assumed. The two-body 
orbital mechanics that gives rise to the six constants of motion and even allows us 
to say what minimum amount of information is necessary has not even been used. 
Let us now consider a method that integrates Newtonian mechanics into the 
geometrical approach of Kepler. 
 
 
 b.  The Method of Laplace 
 
 The basic approach of Laplace was to write the equations of motion in 
terms of the change of a vector from the earth to the object and then to separate 
the vector into its magnitude and its direction cosines. It is the changes in these 
direction cosines that essentially constitute the angular measurements that 
determine the orbital elements. The entire procedure estimates the values for the 
position and velocity vectors at some instant in time. One then can use the 
procedure in Section 7.1 to get the orbital elements. This is the schematic 
procedure that we will follow, but to begin we shall make the following 
definitions for the vectors involved in the development: 
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 Now let us represent the components of the vector p

r
 from the earth to the 

object by their direction cosines specified in terms of the equatorial coordinates of 
the object so that 
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rr      .                         (7.2.3) 

The vector  is simply a unit vector pointing from the earth to the object. I have 
deliberately continued to use the older notation for the geocentric distance ρ 
rather than the currently accepted symbol ∆ as the latter has too widely an 
accepted interpretation as the finite difference operator. 

λ
r

 
 The radial equations of motion for both the object and the earth are: 
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where  
⊕+ρ= rrp
rrr      .                                        (7.2.5) 

If we use this to eliminate  pr
r  from the first equation of motion we get 
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and using this result we can eliminate the earth's acceleration from its equation of 
motion and arrive at  
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Explicitly differentiating the vector ρ

r
 we get 
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which when substituted into equation (7.2.7) yields 
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Regrouping the terms so that the time derivatives of ρ are collected we get 
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Except for these time derivatives and pr

r , all the parameters of equation (7.2.10) 
are known. Remember this is a vector equation so that it constitutes three scalar 
equations for and ρ. The right hand side involves  k  and the heliocentric 
radius vector to the earth 

ρρ &&& ,

⊕r
r , which is presumed to be known for all the times of 

the observations. The parameter rp may be expressed in terms of ρ, r⊕, and the 
angle ψ from the law of cosines as 
 

ψρ−+ρ= ⊕⊕ cosr2rr 222
p    .                                  (7.2.11) 

 
However, this angle can be obtained from the scalar product of pr

r and as λ
r

 

⊕⊕⊕⊕ λ•=ρ•=ψ r/)r(r/)ˆr(cos
rrr           .               (7.2.12) 

 
 Thus, equations (7.2.10-7.2.12) form a closed system of equations for ρ 
and its first two time derivatives. This must be solved numerically and by iteration 
due to the nonlinearity of equations (7.2.11), and (7.2.12). Of course the solution 
depends on having values of λ

r
 and its time derivatives. 

 
 For these time derivatives we turn to the observations. Each positional 
observation consists of a pair of angular coordinates (α,δ) at some particular time 
ti. These angular coordinates are sufficient to generate all the components of λ

r
 

from equation (7.2.3). Thus three temporal measurements provide three values of 
the vector . Now expand this vector in a Taylor series in time about the first 
observation so that 
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Thus, for the three successive times of observations we can write 
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These constitute three linear algebraic vector equations in λ

r
 and its time 

derivatives. Their solution need only be done once per problem as they provide 
the constants necessary for the iterative solution of equations (7.2.10 - 7.2.12) for 
ρ and its time derivatives. However, the solution of these equations is where most 
of the error in the final solution arises. If the observations are taken too close 
together, then their linear independence becomes weak and their values 
(particularly for the second time derivative) small to indeterminate. Simply, too 
small a section of the orbit is sampled to provide an accurate determination of the 
orbital elements. If they are taken too far apart in time, then the validity of the 
Taylor series becomes suspect. In practice, one would use a number of 
observations and perhaps a longer Taylor series to ensure that the first three terms 
were accurately determined. Having assured the accurate determination of λ

r
 and 

its derivatives one can turn to the solution of equations (7.2.10-7.2.12) and obtain 
values for ρ and its time derivatives. These and λ

r
 determine the position vector 

for the object in heliocentric coordinates and its time derivative yields the velocity 
vector for the object, all at the time of the first observation so that 
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We may now use the methods described in the previous section to find the actual 
orbital elements. Let us turn to a rather more elegant method that avoids many of 
the problems of the method of Laplace. 
 
 c.  The Method of Gauss 
 
 While the method of determining orbital elements devised by Laplace is 
conceptually straightforward, it tends to produce poor initial orbital elements. The 
reason for this lies in the approximation for the temporal behavior of the radius 
vector ρ

r
 from the earth to the object. The Taylor series approximation used to 

obtain derivatives of ρ
r

 will generally give uncertain values for those derivatives, 
which, because of the nonlinearity of the problem, yield poor values for the 
orbital elements. Another approach to the problem, due to Gauss, while more 
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complicated, usually produces more accurate results. The reason is that the 
method of Gauss makes approximations to the dynamics of the motion but treats 
the geometry of the observations in a precise manner. The error propagation of 
this approach is generally less unstable than that of the method of Laplace. 
However, due to the detailed complexity of the method, we will only review the 
conceptual approach here and refer the student to Danby7 or Moulton8 for the 
details. 
 
 Gauss begins by taking advantage of the fact that motion of any object 
about the sun (or any two body problem) takes place in a plane. Thus it is possible 
to represent the radius vector from the sun to the object in question for any of the 
three observations as a linear combination of the other two so that 
 

3,2,1i;kji,rCrCr pkkpjjpi =≠≠+=
rrr     .               (7.2.16) 

These represent three vector equations for the values of pr
r , but they are not 

linearly independent. However, if we introduce the fact that the observations are 
made from a moving platform (i.e. the earth) by making use of equation (7.2.5), 
we can generate three vector equations for the geocentric radius vector of the 
object  and these are linearly independent. These vector equations are iρ

r

 
3,2,1i;kji,rrCrCCC ikkjjkkjji =≠≠−+=ρ−ρ−ρ ⊕⊕⊕

rrrrrr   .  (7.2.17) 
 
If the Cjs which determine that fraction of each vector required to produce the 
third were known then everything on the right-hand side of equations (7.2.17) 
would be known and we could solve for three values of the geocentric radius 
vectors . Remember that only the magnitude of iρ

r
iρ
r is unknown as the direction 

cosines are the observations as given in equation (7.2.3). With those three values 
and the three heliocentric radius vectors of the earth ir⊕

r we can calculate three 
values for the heliocentric radius vector of the object pirr . Given three values for 
the heliocentric radius vector, there are a number of ways to proceed to obtain the 
orbital elements. It would appear that there is more information here than is 
necessary as the three heliocentric radius vectors have nine independent 
components where only six are required. However, only two of the radius vectors 
can be regarded as being truly linearly independent. But that is enough. Gauss 
himself gave a complicated method involving Kepler's equation for obtaining the 
elements from the three heliocentric radius vectors. Others have used the three 
heliocentric radius vectors to generate 2pr&

r
which, when coupled with  reduces 2pr

r
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the problem to the initial value problem that we discussed in Section 7.1. Thus all 
that remains is to find an expression for the Cjs. 
 
 Consider taking the vector cross product of equation (7.2.16) with  to 
get 

jpr
r
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rr
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The vector points normal to the orbit and could be used to determine the orbital 
elements associated with the orientation of the orbit once the 

l̂

jpr
r 's are known. The 

scalar coefficients of  are the areas of the triangles formed by l̂ pirr  and  (see 
Figure 7.3). Thus, the C

jpr
r

ks are given by  
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where Aij is the area of the triangle SPiPj . If the area of the triangle were the area 
of the orbital sector enclosed by pirr  and jpr

r  then Kepler's second law would 
guarantee that Ck would simply be given by the ratio of the appropriate time 
interval between observations so that 
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Here the linear dependence of the three heliocentric radius vectors is clearly 
displayed as C2 = [C3/Cl] .However, since we only need two heliocentric radii to 
solve the problem, we may reduce the number of equations in (7.2.17) to just two 
which will then be linearly independent. 
 
 The complicated part of the method of Gauss is involved in calculating 
corrections to the triangular area so that it will approximate the sector. Since the 
corrections appear both in Aij and Akj they will tend to cancel to first order and so 
need not be terribly accurate. This clearly demonstrates the cleverness of Gauss 
and the reason for the superiority of his method to that of Laplace. The truncation 
errors of the Taylor series for the time derivatives of ρ enter directly into the 
determination of the orbital elements. However, the approximation of Gauss is in 
the geometric representation of the orbital motion of the object and enters only in 
the second order. Even here, by following the detailed series expansions given by 
Danby7 or Moulton8, one can generally reduce the error in the Cks and hence the 
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orbital elements to values consistent with the errors of observation. From a rather 
protracted argument Danby7 gives the following expressions for the two linearly 
independent Cis: 
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Figure 7.3 shows a section of the orbit of an object revolving 
about the sun. The object is observed at three points Pi in its orbit 
and the method of Gauss determines the three heliocentric radius 
vectors pirr  .The area Aij is the area of the triangle made from the 
heliocentric radius vectors pirr . 

 
 The improvements in the estimations of the Cis involve information about 
the orbit in the form of the factors of , as they must, because they 
involve the corrections required to go from the orbital sectors bounded by the 
heliocentric radius vectors to the triangles that they form. Danby

)r6/k( 2
2

2

7 gives an 
improved method due to Gibbs which provides a somewhat more accurate form of 
the approximation, but the concept is the same. 
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7.3  Degeneracy and Indeterminacy of the Orbital Elements 
 
 Before leaving the discussion of orbital elements, I would like to 
emphasize further that the equations of celestial mechanics are nonlinear. Of the 
many problems this exacerbates, one is the determination of the orbital elements 
for the object. Occasionally two of the orbital elements become redundant or 
indeterminate depending from which end of the two body problem one is starting. 
For a circular orbit clearly there is no perihelion or point of closest approach. 
Therefore, there can be no time of perihelion passage. Similarly if the orbital 
inclination is zero, the orbital plane is co-planar with the plane that defines the 
coordinate frame and there will be no line of nodes. In this instance the longitude 
of the ascending node is undefined. One may define the problem out of existence 
by simply taking the passage of the first point of Aries or the vernal equinox as 
the reference point for measuring time and the true anomaly. If the inclination is 
zero and the orbit elliptical, one could simply measure the argument of perihelion 
from the vernal equinox and have a perfectly well defined orbit, and no trouble 
would be encountered in locating the object in the sky. 
 
 However, in the event that one is determining the orbital elements from 
observation, there is no advanced information regarding the pathology of the 
solution. If the inclination is small, the error in the longitude of the ascending 
node Ω will be large. Similarly, should the eccentricity prove to be very small, the 
error in the argument of perihelion will be large, so that the time of perihelion 
passage is poorly known. These errors propagate in a highly nonlinear way and 
one must be ever mindful of them. The problems caused by a low value of the 
inclination are not fundamental but result from an unfortunate choice of the 
coordinate system. They can be eliminated by choosing a different coordinate 
frame in which to do the calculations. However, the problems are real and will 
return upon subsequent transformation to the original coordinate frame. The 
problems introduced by circular orbits are more fundamental as they result from a 
degeneracy of the orbit itself, and that cannot be transformed away. One can take 
some comfort from the fact that an uncertain location of the point of perihelion 
does not mean that the location of the object in its orbit will be uncertain since 
that error is usually compensated by an opposite error in the time of perihelion 
passage. The errors in the orbital elements will not be linearly independent so that 
the net result in locating the object in its orbit will not necessarily be serious. It is 
better under these conditions to measure the time in the orbit from some well 
determined location such as the vernal equinox.  
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 In this chapter we have seen how to determine the orbital elements of an 
object from observational information regarding its motion. This constitutes the 
second part of the classical celestial mechanics problem of describing the motion 
of one object about another. In practice, the calculation of precise orbital elements 
involves many additional practical details concerned with both observations and 
the theory, but the overall approach is roughly that described here. There are a 
number of alternative approaches to finding the orbital elements. Indeed, is said 
that Gauss devised some thirteen different schemes for his doctoral thesis. 
However, the information content of three sets of angular measurements or the 
equivalent is always required and the details concern only the devoted 
practitioner. In the previous chapter we used the elements to predict the motion of 
the object on the sky. Thus, the two pieces can be put together to predict the 
motion of an object on the basis of observations of its motion. This is certainly the 
classical task of any science -that is, to predict the future behavior of the physical 
world from knowledge of its current behavior. This was a great triumph for 
Newtonian mechanics in the l7th and l8th centuries and indeed for science itself. 
The mathematicians and philosophers who came after Newton developed this 
elegant determinism to deal with much more formidable problems than the two 
body problem. For the remainder of the book we shall look at some of their 
successes and some of the remaining problems. 
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 Chapter 7: Exercises 
 
1. Find the altitude, azimuth, Right Ascension, and Declination of the planet 

Venus as seen from Columbus Ohio at 9:00 PM EST February 10, 1988. 
 
 Given the orbital elements: 
 

a = 0.7233316 AU 
e = 0.006818 - 0.00005 T 
l = 81o 34' 19" (on Jan 0.5, 1950) 
i =  3 o  23' 37" .1 +   4".5 × T 
P = 0.6151856 yr. = 224.701 days 
Ω = 75 o  47' 01" + 3260" × T 
ϖ= 130 o 09' 08" + 5065" × T 
T = (67 + Date/365.25)/100 

 
2. With what geocentric velocity must an artificial satellite be launched 

horizontally from the earth in order that its apogee distance from the earth's 
center is 60 earth radii (approximately the moon's distance)? What will be 
the orbital eccentricity and the orbital period? Ignore air resistance and the 
gravitational effects of other bodies in the solar system. 

 
3. You plan a trip to Venus. Assume that the orbits of the earth and Venus are 

circular and co-planar. You will launch your ship from the earth in a 
direction directly opposite to the earth's orbital motion so that spacecraft has 
velocity V with respect to the sun when it is "clear of the earth". Note that  
V < VE (the earth's orbital speed) and the ship is at its aphelion point at 
launch. We desire the perihelion point to be at the orbit of Venus                 
(a = 0.723AU). What are the semi-major axis (ar) and the eccentricity (er) of 
the spacecraft's transfer orbit in terms of V? What is the orbital period of the 
spacecraft? What is the travel time to Venus and where should Venus be in 
the sky at the time of launch in order to ensure its presence when you 
arrive? 
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4. If the heliocentric Cartesian coordinates (i.e., the origin is at the sun, the x-
axis points toward the vernal equinox, and the z-axis is normal to the 
ecliptic plane) of a certain comet on November 26.74, 1910 were: 

 
Pr = [(+2.795526), (+1.399919), (0)]  AU 

     
      and, 

o = 267E 16' 36" .6 
    Ω = 206E 40' 11" .8    
         i =   18E 29' 41" .1   , 
 
 find the heliocentric coordinates on January 0.5, 1986. Find the altitude and 

azimuth as seen from Cleveland Ohio at 7:00AM EST. Ignore the 
difference between ET and UT. 

 
5. Given the heliocentric equatorial position and velocity vectors of an object 

in orbit about the sun to be 
 

⎪
⎭

⎪
⎬

⎫

++=

++=

k̂
3
ĵ
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 where the units of time and distance are years and astronomical units. Find 

the position of the object two years later. List specifically all assumptions 
you make and describe clearly the approach you took to the problem. 
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The Dynamics of More Than Two Bodies 
 
 
 In Chapter 3 we established the general principles of Newtonian 
mechanics and the mathematical formalism for the determination of the equations 
of motion for the objects that make up an arbitrary mechanical system. We used 
those principles in Chapter 5 to describe the motion of two bodies under their 
mutual gravitational attraction. As we shall see, problems dealing with more than 
two bodies become extremely complicated and do not, in general, yield closed 
form solutions. The dynamical behavior of large systems of stars that seem to 
populate the central regions of galaxies is currently a problem of intense study 
three and a half centuries after Newton identified the principles that guide their 
motion. Before we even attempt to discuss systems consisting of a large number 
of objects, we shall discuss systems of three objects.  
 
8.1  The Restricted Three Body Problem 
 
 Certainly the next logical step after the solution of the two body problem 
is the addition of a third body. Yet even here we find that the general problem is 
unsolved. Nature seems to deal with the problem in a simple manner for there are 
many stellar systems consisting of three or more stars bound by their mutual 
gravitational attraction. However, in all of these systems, the objects seem to 
degenerate to a hierarchical succession of two body problems. For example, 
should the system contain three stars, two will be tightly bound orbiting as one 
would expect from the two body solution and the third will be found at a distance 
corresponding to many times the separation of the close orbiting pair. Four 
gravitationally bound stars always appear as a binary of binaries and so forth. It is 
generally believed that there are no stable orbits involving three comparable 
masses with comparable separations.  
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 The source of the difficulty in dealing with as few as three objects can be 
found in the notion of the integrals of the motion discussed in Chapter 5 (Sec 5.3). 
In any mechanics problem one always has the Hamiltonian, or the total energy, 
and the total angular momentum as integrals of the motion. These are quantities 
which will be constant throughout the motion of the members of the system 
wherever they may go. Since the angular momentum is a vector quantity, it has 
three linearly independent components, each of which serves as a constant of the 
motion. Thus the conservation of energy and angular momentum provide four 
constants that restrict the motion of the system. Taken together with the six 
constants that specify the uniform motion of the center of mass, there remain only 
two constants to completely determine the motion of a two body system. It is the 
quadratic nature of the force law that requires that solutions for the orbits will also 
be quadratic and thus if the orbits are bound they will be closed. This is not the 
case for other force laws, as is evidenced by the precession of the perihelion of 
Mercury's orbit resulting from the presence of masses other than the sun in the 
solar system. Mercury's orbit isn't quite elliptical and never exactly closes in 
space. Closure requires that the object return to the same physical location with 
the same velocity. Thus the last constant serves only to locate the particle in its 
orbit. 
 
 Since the general problem of three bodies will be described by a second 
order vector differential equation for each of the particles, there will be l8 
constants of motion. The conservation of angular momentum and energy together 
with the uniform motion of the center of mass will provide 10 constants leaving 
eight to be determined. Since the general potential affecting anyone of the objects 
will not be that of a single point mass we should not expect the orbits of the 
objects to close and we are left with eight arbitrary constants required to specify 
the problem. Thus the motion is in no way uniquely determined by the 
conservation laws of physics as was the case for the two body problem. To be 
sure the initial position and velocities of the components would provide the l8 
constants required for the unique solution of the motion since the laws of 
Newtonian mechanics are deterministic. But these initial values are not integrals 
of the motion. The parameters they specify are not constant during the motion of 
the members of the system. Thus while they provide a basis for calculating the 
motion of a specific system, they do not allow for a general solution. Since the 
general solution of the three body problem appears beyond our grasp, let us 
consider a simpler problem intermediate between the two body problem and the 
general three body problem. 
 
 The question of what is the most complicated problem in celestial 
mechanics that allows for a general solution has occupied some of the best 
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analytical minds of the past three centuries and continues to be of interest today. 
Consider two bodies of comparable but dissimilar masses in circular orbit about 
one another. Now introduce a third object of negligible mass. Here "negligible 
mass" means that it is affected by the presence of the other two objects, but does 
not exert sufficient force on either of the two so as to disturb their circular motion. 
It is then a reasonable question to inquire into the motion of this third object. Such 
a question is not entirely academic as this is an excellent approximation to the 
motion of a spacecraft in the earth-moon system. It is also a fair approximation to 
the motion of some asteroids influenced by the gravitational fields of the sun and 
Jupiter. This problem is called the circular restricted three body problem and its 
solution contains some surprising results.  
 
 a.  Jacobi's Integral of the Motion 
 
 We analyzed the two body problem in physical units, but we are free to 
choose any system of units we please. So let us measure mass in units such that 
the total mass of the system is unity. Then  
 

1Mmm 21 ≡=+     .                                  (8.1.1) 
 
We could then quite arbitrarily require the less massive of the orbiting pair. to 
have a mass µ so that 
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Remember that the third object in the system has essentially zero mass in that it 
doesn't contribute to the total mass of the system at any level that could be 
considered significant. Indeed, it behaves as a 'test particle' as described in 
Chapter 5. Now we are free to choose the units by which we measure time so 
instead of using seconds, let us measure time in units of the orbital period of the 
two significant objects about one another. For the earth and the sun this would be 
years multiplied by 2π. Such a choice requires that the attractive force between 
the objects be such that 

1}d/])1{[(k 2/13 =µ+µ−≡ω    .                            (8.1.3) 
 
 Now for the description of the motion of the third object, let us choose a 
Cartesian coordinate system with an origin at the center of mass and rotating with 
the uniform circular motion of the two non-negligible masses. Thus the least 
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massive object will be located at x1 and the more massive one at x2. The third 
object will have coordinates [x,y,z] so that its radial distance from the two objects 
can be represented by 
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In an inertial coordinate system the total energy would simply be 
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However, if the coordinate system is rotating, the kinetic energy will be reduced 
by the rotational motion and, to conserve energy, we will have to increase the 
potential energy by a corresponding amount. Since the orbits of ml and m2 are 
circular, their contribution to the kinetic and potential energies of the system will 
separately remain constant. Thus energy conservation can be reduced to the 
energy of the small mass body constant. If we let the object have a mass ε, then 
the total energy of the small body is 
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Here v is the velocity measured in the rotating coordinate frame and the quantity 
)yx( 222

2
1 +εω is just the contribution from the rotational motion of the 
coordinate frame itself. Dividing out the negligible mass of the third body and 
taking ω = l, we can write 
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where C is some constant of the motion. This is known as Jacobi's integral and is 
nothing more than the energy integral for the third body. Now it is clear why the 
orbits of the other two bodies were assumed to be circular. Still the equations of 
motion for the third object require six constants of motion for complete 
specification of the motion of the third body. Thus we need five more. The total 
angular momentum of the system is conserved, but it is entirely tied up in the 
motion of the two objects and thus is of little help here. The remaining five 
constants are simply not known, so that it is remarkable that we may say anything 
about the motion of the third object. 
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 b.  Zero Velocity Surfaces 
 
 Now  0v by definition so that Jacobi's integral places limits on where 
the third object may go depending on the value of C. Let us consider surfaces 
where v = 0, These are surfaces that provide bounds for the third object's motion, 
for the particle cannot cross them. For it to do so the square of the particle's 
velocity would have to change sign, Remembering that we can take ω = 1, we can 
write the expression for the zero velocity surfaces as 

2 ≥

 

C
r
2

r
)1(2)yx(

21

22 =
µ

+
µ−

++    .                          (8.1.8) 

 
Clearly the value of C must always be positive. Therefore consider the case where 
C >> 0. Then either or one of the radial distances [r)yx(C 22 +≈ l , r2] must be 
small. Thus either the third body is very close to one of the objects in a tight orbit 
about it or it is very distant and moves as if the pair was a point source. This is the 
solution most commonly found in nature, The zero-velocity surfaces would then 
consist of a cylinder normal to the x-y plane at some distance rather greater than 
the separation distance d and two smaller 'egg- shaped' surfaces close to each of 
the objects. These surfaces confine the motion to outside the cylinder or within 
the oval surfaces. As the value of C is decreased, the outer cylinder decreases in 
radius and the inner ovoids become bigger. As the value of C continues to 
decrease the two inner ovoids will touch at a point along the line joining two 
circularly revolving objects. Let this value be called C2 and the physical point in 
space labeled Ll. A particle confined within the ovoids will then be able to move 
from one to another as this "double point" no longer divides regions of space 
where v2 has opposite sign, As the ovoids continue to grow with decreasing C 
they join at Ll forming a hour glass shaped structure that grows to meet the 
shrinking cylinder. Eventually, as C takes on smaller and smaller values, the two 
regions will meet first along the line joining the centers and behind the less 
massive of the two principle masses. Let this value of C be called C3 and the 
corresponding spatial location be known as L2. The point that occurs behind the 
more massive of the two objects is known as L3 and occurs when C decreases to 
C4. A further decrease in the value of C causes the surfaces to separate into two 
comma shaped regions in the x-y plane which asymptotically approach two points 
when C becomes C5. These two points can be distinguished in that one leads the 
more massive object in its orbit while the other trails behind. They are called L4 
and L5 respectively. The Lis are collectively called the Lagrange points and have 
special significance. Figure 8.1 shows cross sections of these surfaces in the x-y 
and x-z planes. 
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Figure 8.1 shows the zero velocity surfaces for sections through 
the rotating coordinate system. The upper drawing shows the cross 
section through the x-z plane while the lower drawing shows the 
cross section of the x-y plane. The various values of C, as well as 
the location of the Lagrangian points of equilibrium, are indicated. 
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 c.  The Lagrange Points and Equilibrium. 
 
 In Chapter 5 [equation (5.3.4)] we defined a "rotational potential" to 
account for the centrifugal forces generated by the conservation of angular 
momentum. In a similar manner, we can define a new potential to take account of 
the rotation of the coordinate frame by including the energy resulting from the 
motion of the coordinate frame itself. Let this potential be 
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so that the total energy of the third body is 
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The forces acting on the third body will just be 
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Since the function v2 vanishes at the points where two zero velocity surfaces meet 
and , its gradient must also vanish on those surfaces. Thus the points of 
tangency represent places of equilibrium where all forces on the third body 
vanish. It remains to be established if those points represent stable equilibrium. 
Therefore the Lagrangian points may be found from 
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Since each component of the vector must be zero separately, the equations of 
condition for the Lagrangian points are 
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Neither rl nor r2 is zero and 1≠µ so that the z-component of the gradient requires 
that z = 0 and that all the Lagrangian points lie in the x-y plane. If , then the 
y-component of the gradient requires that 

0y ≠
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This has a solution for 
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Since in the units we are using the separation of the two orbiting masses is unity, 
these points must lie at the vertices of equilateral triangles in the x-y plane having 
the line joining the two orbiting masses as a base. These are the points L4 and L5. 
Thus the Lagrangian points L4 and L5 lie in the orbital plane, leading and 
following the orbiting bodies by 60° at a distance equal to the separation of those 
two bodies. If we satisfy the conditions on the gradient by requiring both y and z 
to be zero, then the x-component of the gradient requires 
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and the remaining Lagrangian points will lie along the x-axis at the roots of the 
polynomic equation (8.1.16). In general, all solutions must be found numerically. 
However, Moulton8 (p.290) gives series solutions for the location of the 
Lagrangian points in terms of µ.  
  
 In order to test the nature of the stability of the Lagrangian points one need 
calculate 
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If this condition is satisfied for all of the coordinates, then each of the points 
represents a point of stable equilibrium. That is, if a particle is slightly displaced 
from the point, the particle will return to it. This is the case for L4 and L5. 
However, Ll, L2, and L3 are all unstable and an object displaced from anyone of 
them will continue to move away from them. Since the condition given in 
equation (8.1.17) is essentially the derivative of the forces acting on the particle, 
stable equilibrium requires that a small displacement generate a small negative 
force pushing the object back where it came from. A small positive force would 
continue to accelerate the particle away from its earlier location. The relative 
stability of the Lagrangian points can be seen from Figure 8.1. For Ll, L2, and L3 
the touching of the zero velocity surfaces joins two regions where the motion of 
the particle was previously confined. Thus particles can freely roam from one 
region to the other. A particle at one of these points could then move either way 
and would not be stable. However, Lagrangian points L4 and L5 represent the 
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'center' of a forbidden region where v2 < 0 so that the kinetic energy would have 
to be increased in order to move away from them. As the value of C is decreased 
so that the forbidden region shrinks to a point, that point can be occupied, but 
only by a particle with zero velocity. A small displacement would not provide the 
kinetic energy required for the particle to return to the point and the point would 
be stable. 
 
 The Lagrangian points are important in astronomy as they mark places 
where particles can either be trapped (L4 and L5) or will pass through with a 
minimum expenditure of energy. In the solar system there are two sets of 
asteroids known as the Trojan asteroids that lead and follow Jupiter about in its 
orbit oscillating about L4 and L5. In the theory of binary star evolution, the more 
massive component will expand as it ages until material meets one of the 
Lagrangian points. If that point is Ll, the matter will stream across the gap 
between the two stars and eventually be accreted onto the other member of the 
system. Should either L2 or L3 be encountered, the matter will pass through and is 
likely to be lost to the system entirely.  
 
 Much more could be said (eg. Moulton8) about the restricted three body 
problem as books have been written on the subject and some people have devoted 
their lives to its study. However, its most important aspects are bound up in the 
study of Jacobi's Integral and it is remarkable that so much can be said about the 
motion of the third body from knowledge of one integral of the motion. 
 
8.2  The N-Body Problem 
 
 After encountering the difficulties posed by the three body problem it 
must seem foolhardy to even consider larger systems. However, the universe is 
full of systems of many objects that are largely bound by their mutual gravity and 
we would like to understand as much about their dynamics as possible. Let us 
begin by determining the equations of motion for such a system. We can do this 
as we did for central forces and the two body problem by calculating the 
Lagrangian. Thus, 
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The equations of motion are therefore 
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Summing these equations over all the particles we get 
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Now since 
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we may pair the terms in the double sum on the right hand side of equation (8.2.3) 
so that they individually cancel to zero leaving 
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This equation can be directly integrated twice with respect to time to get 
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The left hand side of this equation is the definition of the center of mass and the 
vectors on the right hand side have six linearly independent components. Thus, 
even for a dynamical system of N particles, the center of mass will move with a 
uniform velocity. However, N second order vector equations will require 6N 
constants of integration in order to uniquely specify the motion of the particles 
and finding six seems of little help.  
 
 Taking the cross product of a position vector with the equations of motion 
we can write 
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Since 
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we can again sum equation (8.2.7) over all the particles and pair the terms under 
the double sum of the right hand side so that they vanish to zero. Thus we may 
write 
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and find that the total angular momentum of all the particles will be constant. 
Thus we add three more constants of the motion to our total. We also establish 
that there will be a fundamental plane of the system that is perpendicular to the 
total angular momentum vector. Similarly we can invoke the conservation of the 
total energy to get a last constant of the motion as 
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 Thus, as was the case with the three body problem, we have 10 integrals of 
the motion, far short of the 6N needed to complete the solution. In addition, all of 
these constants of the motion are global. That is, they refer to properties of the 
total system and tell us little about the motion of individual particles. However, 
there is one more global condition that is of considerable help in understanding 
the history of the system. 
 
 a.  The Virial Theorem 
 
 The virial theorem, as it is commonly called in the literature, takes on 
many forms. However, all of them have in common a relationship whose origins 
are in the equations of motion for the system. We will generate only the simplest 
of these relationships, namely that appropriate for particles moving under the 
influence of the gravitational force. A derivation for an arbitrary central force law 
is given by Collins9. The general equations of motion for such a system of 
particles are given in equation (8.2.2). Now take the scalar product of those 
equations with a position vector to each object in the system and sum over all the 
particles so that 
 

( ) ( )
∑ ∑ ∑ ∑∑

≠

•−
=•−•=•

i i i ij
3
ij

iji
jiiiiiii

i
iii

d

rrr
mmGrrmrr

dt
dmrrm

rrr
&r&rr&rr&&r  .   (8.2.11) 

 
We can rewrite the central part of equation (8.2.11) so that 
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where T is the total kinetic energy of the system. We have also rewritten the left 
hand side of equation (8.2.11) to explicitly show the pairing of terms for the force 
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of ith particle on the jth particle with the force of the jth particle on the ith 
particle. The first term in square brackets is a "moment of inertia"-like term only 
instead of it being a moment of inertia about an axis it is the moment of inertia 
about the origin of the coordinate system. Let us call this quantity I so that 
equation (8.2.12) becomes 
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The term on the far right is the negative of the potential energy of the system so 
that 

VT2
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Some call this the virial theorem, but it is more correctly known as Lagrange's 
identity even though Lagrange only proved it for the case of three bodies. Karl 
Jacobi generalized it to a system with N-bodies and it is clearly an identity. That 
is, it is very like a conservation law as it must always be true for any dynamical 
system. Now if one integrates Lagrange's identity over time, one can write for 
stable or bound systems that 
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This result also holds if the system is periodic and the integral is taken over the 
period of the system, since the system must return to an earlier state so that the 
moment of inertia and all its derivatives are the same at the limits of the integral. 
Equation (8.2.15) is known as the time-averaged form of the virial theorem (or 
generally just the virial theorem) and provides an additional constraint on the 
behavior of the system. 
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 b.  The Ergodic Theorem 
 
 The ergodic theorem is in the category of concepts that are so basic that 
they are never taught, but are assumed to be known. For that reason alone, it is 
worth discussing. Ergodic theory constitutes a major branch of mathematics and 
its physical application has occupied some of the best minds of the twentieth 
century. The theorem from which this branch of mathematics takes its name 
basically says that the average of some property of a system over all allowed 
points in phase space is identical to the average of that same quantity over the 
entire lifetime of the system. To explain this and its implications, we must first 
say what is meant by phase space. 
 
 Consider a 6-dimensional space where the coordinates are defined as the 
location and momentum of a particle. The coordinates of the particle in such a 
space specify its position and momentum, which requires the six components of 
its location in phase space. These six components constitute the six constants 
required for the solution of the Newtonian equations of motion. Thus locating a 
particle in phase space fixes its entire history - past and future and thus determines 
the path that the particle will take through phase space as it moves. However, not 
all points in phase space are allowed to the particle, for its total energy cannot 
change and there are points in phase space that correspond to different total 
energies for the particle. Thus, the path of the particle in phase space will be 
limited to a "space" of one lower dimension - namely one where the total energy 
is constant. Quantities that limit the phase space available to the motion of a 
particle are said to be isolating integrals of the motion and certainly the total 
energy is one of them. If we are dealing with the' motion of a single particle in an 
arbitrary conservative force field, its angular momentum will also be an isolating 
integral. 
 
 Thus, the ergodic theorem says that a particle will reach every point in the 
phase space allowed to it during its lifetime so that the path of the particle will 
completely cover the space. Therefore averages of quantities taken over the space 
are equivalent to averages taken over the lifetime. This seemingly esoteric 
theorem is of fundamental importance to physics. In thermodynamics we make 
predictions about time averages of systems but can observe only phase space 
averages. Thus to relate the two, it is necessary to invoke the "Ergodic 
hypothesis" -namely, that the ergodic theorem applies to thermodynamic systems. 
The best justification for this hypothesis is that thermodynamics works! 
 
 Unfortunately, the ergodic theorem has never been proved in its full 
generality, but sufficiently general versions of it have been proved so that we may 

 
 
 
 
 

123



use it in science. This allows us to replace the time averages that appear in 
equation (8.2.15) with averages over phase space. This is fortunate as the average 
astronomer doesn't live long enough to carry out the time averages required to use 
the virial theorem. The difficulty in applying the virial theorem is in deciding 
exactly in what subspace is the system ergodic; that is, in deciding how many 
isolating integrals of the motion there are and what are they. Without that 
information, we cannot determine how to carry out the averages over the 
appropriate phase space. 
 
 What sorts of things might we want to average? Clearly for the virial 
theorem we would like to know the average of the kinetic and potential energies 
for if they do not satisfy equation (8.2.15), the system is not stable and will 
eventually disperse. Conversely, if the system is adjudged to be a stable system, 
the average of one of these quantities, together with the virial theorem, will 
provide the other. This is often used to determine the mass of stable systems. 
 
 
 c.  Liouville's Theorem 
 
 We conclude our discussion of the N-body problem with a brief discussion 
of a theorem that deals with the history of an entire system of particles. To do this, 
we need to generalize our notion of phase space. Consider a space of not just six 
dimensions, but 6N dimensions where N is the number of particles in the system. 
Each of the dimensions represents either the position or momentum of one of the 
particles. As there was need of six dimensions for a system consisting of one 
particle, the 6N dimensions will suffice to specify the initial conditions for every 
particle in the system. Thus, the system represents only a point in this huge space, 
and the space itself is the space of all possible systems of N particles. Such a 
space is usually distinguished from phase space by calling it configuration space. 
The temporal history of such a system will be but a single line in configuration 
space. Liouville's theorem states that the density of points in configuration space 
is constant. This, in turn, can be used to demonstrate the determinism and 
uniqueness of Newtonian mechanics. If the configuration density is constant, it is 
impossible for two different system paths to cross, for to do so, one path would 
have to cross a volume element surrounding a point on the other path thereby 
changing the density. If no two paths can cross, then it is impossible for any two 
ensembles ever to have exactly the same values of position and momentum for all 
of their particles. Equivalently, the initial conditions of an ensemble of particles 
uniquely specify its path in configuration space. This is not offered as a rigorous 
proof, but only as a plausibility argument. More rigorous proofs can be found in 
any good book on classical mechanics.  
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 The ergodic theorem applies here as well, for if any two systems ever 
cross in configuration space, they must in reality be the same system seen at 
different times in its dynamical history. Clearly the paths of systems with 
different total energies can never cross in accord with Liouville's theorem, but 
will cover the subspace allowed to them in accordance with the ergodic theorem. 
 
 These three theorems are powerful products of the great development of 
classical mechanics of the nineteenth century. They give us additional and 
rigorous constraints that apply to systems with any number of particles and they 
lie at the very foundations of modern physics. They are basically statements of 
conservation laws and the determinism of Newtonian physics. 
 
 
8.3  Chaotic Dynamics in Celestial Mechanics 
 
 Theoretical physics has had a difficult time, in general, describing 
phenomena that exhibit some degree of order, but not complete order. Total 
disorder can be dealt with and thermodynamics is an example of highly developed 
theoretical structure that deals with gases whose constituents show totally random 
behavior. Classical mechanics describes well ordered systems with great success. 
However, intermediate cases are not well understood. This weakness in 
theoretical physics can be found throughout the discipline from the theories of 
radiative and convective transfer of energy, to "cooperative phenomena" in stellar 
dynamics. We have seen from our study of the N-body problem that non-periodic 
solutions and ergodic paths in phase space can result. The solar system is an N-
body system, yet it clearly displays a high degree of order. Might not we expect 
some aspects of it to behave otherwise? 
 
 The space program of the 1960s and 1970s brought us detailed 
photographs of various objects in the solar system whose dynamical behavior 
proved to be far more complicated than was previously imagined. The rings of 
Saturn proved to be more numerous and structured than anyone believed possible. 
One of the Saturnian satellites (Hyperion) appears to tumble in an unpredictable 
manner. The rings of Uranus have a structure that most astronomers would have 
thought was unstable. This list is far from exhaustive, but begins to illustrate that 
there are many problems of celestial mechanics that remain to be solved. One of 
the most productive approaches to some of these problems has been through the 
developing mathematics of Chaos. In the area of dynamics, chaotic phenomena 
are those that, while being restricted in phase space, do not exhibit any 
discernable periodicity. Wisdom10 has written a superb review article on the 
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examples of chaos in the dynamics of the solar system and we will review some 
of his observations.  
 
 In the nineteenth century Poincare showed that integrals of the motion 
usually do not survive orbital perturbations. Thus, closed form integration of 
perturbed orbits will not, in general, be possible. However, a more recently 
proved theorem known as the KAM theorem shows that for small perturbations, 
orbital motion will remain quasi-periodic. Thus the simple loss of the integrals of 
the motion does not imply that the dynamical motion of the object will become 
unrestrained in phase-space and be ergodic. This somewhat surprising result 
implies that we might expect to find orbits that are largely unpredictable but 
remain confined to parts of phase space. Wisdom points out that the phase space 
accessible to a system with a given Hamiltonian may depend critically on the 
initial conditions. For some sets of initial conditions, the motion of the system 
will be quasi-periodic, and the system will be confined to a relatively small 
volume of phase space. For modest changes in the initial conditions, the motion of 
the system becomes chaotic and completely unpredictable. It is a characteristic of 
such systems that the transition from one region to another is quite sharp. A 
similar situation is seen in thermodynamics when a system undergoes a phase 
transition. Here the mathematics of Chaos has been relatively successful in 
describing such transitions. 
 
 A simple example of such a dynamical system can be found in the 
restricted three body problem. From Figure 8.1 it is clear that an object orbiting 
close to one or the other of the two main bodies will experience nearly elliptical 
motion that is certainly quasi-periodic. However, for values of C of the order of 
C3 the motion is barely confined and numerical experiments show that the orbits 
wander over a large range of the allowable phase space in a non-periodic manner. 
Thus with chaotic behavior being present in such a relatively simple system, we 
should not be surprised to find it in the solar system. While analysis of such 
systems is still in its infancy, we know enough about the mathematics of Chaos to 
be confident that it will lead to a more complete understanding of non- linear 
dynamical systems. We are once again reminded that the future of theoretical 
physics can be seen "through a glass darkly" in the developing mathematics of the 
present. 
 
 
 
 
 
 

 
 
 
 
 

126



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

127



Chapter 8: Exercises 
 
1. Show that the Lagrangian points L4 and L5 are points of stable equilibrium 

while the Lagrangian points L1-L3 are not. 
  
2. Derive the virial theorem for an attractive potential that varies as 1/r2. 
 
3. Show that the virial theorem has its normal form even if there are velocity 

dependent forces present. 
 
4. How many isolating integrals of the motion are there for the case of just two 

orbiting bodies? What does this mean for the application of the ergodic 
theorem to the virial theorem? 
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Perturbation Theory and Celestial 
Mechanics 

 
 
 
 In this last chapter we shall sketch some aspects of perturbation theory and 
describe a few of its applications to celestial mechanics. Perturbation theory is a 
very broad subject with applications in many areas of the physical sciences. 
Indeed, it is almost more a philosophy than a theory. The basic principle is to find 
a solution to a problem that is similar to the one of interest and then to cast the 
solution to the target problem in terms of parameters related to the known 
solution. Usually these parameters are similar to those of the problem with the 
known solution and differ from them by a small amount. The small amount is 
known as a perturbation and hence the name perturbation theory. 
 
 This prescription is so general as to make a general discussion almost 
impossible. The word "perturbation" implies a small change. Thus, one usually 
makes a "small change" in some parameter of a known problem and allows it to 
propagate through to the answer. One makes use of all the mathematical 
properties of the problem to obtain equations that are solvable usually as a result 
of the relative smallness of the perturbation. For example, consider a situation in 
which the fundamental equations governing the problem of interest are linear. The 
linearity of the equations guarantees that any linear combination of solutions is 
also a solution. Thus, one finds an analytic solution close to the problem of 
interest and removes it from the defining equations. One now has a set of 
equations where the solution is composed of small quantities and their solution 
may be made simpler because of it.  
 
 However, the differential equations that describe the dynamics of a system 
of particles are definitely nonlinear and so one must be somewhat more clever in 
applying the concept of perturbation theory. In this regard, celestial mechanics is 
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a poor field in which to learn perturbation theory. One would be better served 
learning from a linear theory like quantum mechanics. Nevertheless, celestial 
mechanics is where we are, so we will make the best of it. Let us begin with a 
general statement of the approach for a conservative perturbing force. 
 
9.1  The Basic Approach to the Perturbed Two Body Problem 
 
 The first step in any application of perturbation theory is to identify the 
space in which the perturbations are to be carried out and what variables are to be 
perturbed. At first glance, one could say that the ultimate result is to predict the 
position and velocity of one object with respect to another. Thus, one is tempted 
to look directly for perturbations to r

r
 as a function of time. However, the non-

linearity of the equations of motion will make such an approach unworkable. 
Instead, let us make use of what we know about the solution to the two body 
problem. 
 
 For the two body problem we saw that the equations of motion have the 
form 

0r =Φ∇+&&
r   ,                                              (9.1.1) 

 
where Φ is the potential of a point mass given by 
 

r
GM

−=Φ   .                                              (9.1.2) 

 
Let us assume that there is an additional source of a potential that can be 
represented by a scalar -ψ  that introduces small forces acting on the object so that 
 

Ψ∇>>Φ∇    .                                           (9.1.3) 
 
We can then write the equations of motion as 
 

)t,r(r
r&&r Ψ∇=Φ∇+   .                                       (9.1.4) 

 
Here ψ is the negative of the perturbing potential by convention. If ψ is a 
constant, then the solution to the equations of motion will be the solution to the 
two body problem. However, we already know that this will be a conic section 
which can be represented by six constants called the orbital elements. We also 
know that these six orbital elements can be divided into two triplets, the first of 
which deals with the size and shape of the orbit, and the second of which deals 
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with the orientation of that orbit with respect to a specified coordinate system. A 
very reasonable question to ask is how the presence of the perturbing potential 
affects the orbital elements. Clearly they will no longer be constants, but will vary 
in time. However, the knowledge of those constants as a function of time will 
allow us to predict the position and velocity of the object as well as its apparent 
location in the sky using the development in Chapters 5, 6, and 7. This results 
from the fact that at any instant in time the object can be viewed as following an 
orbit that is a conic section. Only the characteristics of that conic section will be 
changing in time. Thus, the solution space appropriate for the perturbation 
analysis becomes the space defined by the six linearly independent orbital 
elements. That we can indeed do this results from the fact that the uniform motion 
of the center of mass provides the remaining six constants of integration even in a 
system of N bodies. Thus the determination of the temporal behavior of the orbital 
elements provides the remaining six pieces of linearly independent information 
required to uniquely determine the object's motion. The choice of the orbital 
elements as the set of parameters to perturb allows us to use all of the 
development of the two body problem to complete the solution. 
 
 Thus, let us define a vector ξ

r
 whose components are the instantaneous 

elements of the orbit so that we may regard the solution to the problem as given 
by 

)t,(rr ξ=
rrr

  .                                         (9.1.5) 
 
The problem has now been changed to finding how the orbital elements change in 
time due to the presence of the perturbing potential -ψ. Explicitly we wish to 
recast the equations of motion as equations for dtdξ

r
. If we consider the case 

where the perturbing potential is zero, then ξ
r

 is constant so that we can write the 
unperturbed velocity as 

t
)t,(r

dt
rdv
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==
rrr

r    .                                    (9.1.6) 

 
Now let us define a specific set of orbital elements 0ξ

r
 to be those that would 

determine the particle's motion if the perturbing potential suddenly became zero at 
some time t0 

)t( 00 ξ≡ξ
rr

   .                                        (9.1.7) 
 
The orbital elements  represent an orbit that is tangent to the perturbed orbit at 
t

0ξ
r

0 and is usually called the osculating orbit. By the chain rule 
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Equation (9.1.6) is correct for 0ξ  and at t = t0 , 0ξ=ξ  so if we compare this with 
equation (9.1.6), we have 
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This is sometimes called the osculation condition. Applying this condition and 
differentiating equation (9.1.8) again with respect to time we get 
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If we replace 22 dtrd in equation (9.1.4) by equation (9.1.10), we get 
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However the explicit time dependence of )t,(r ξ

rr
 is the same as )t,(r 0ξ

rr  so that 
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Therefore the first two terms of equation (9.1.11) sum to zero and, together with 
the osculating condition of equation (9.1.9), we have 
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as equations of condition for E. Differentiation with respect to a vector simply 
means that the differentiation is carried out with respect to each component of the 
vector. Therefore ]r[ ξ∂∂

rr
 is a second rank tensor with components ]r[ ji ξ∂∂ . 

Thus each of the equations (9.1.13) are vector equations, so there is a separate 
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scalar equation for each component of r
r

. Together they represent six nonlinear 
inhomogeneous partial differential equations for the six components of ξ

r
. The 

initial conditions for the solution are simply the values of 0ξ
r

 and its time 
derivatives at t0. Appropriate mathematical rigor can be applied to find the 
conditions under which this system of equations will have a unique solution and 
this will happen as long as the Jacobian of 0)v,r( ≠ξ∂∂

rrr . Complete as these 

equations are, their form and application are something less than clear, so let us 
turn to a more specific application.  
 
 
 
9.2 The Cartesian Formulation, Lagrangian Brackets, and Specific 
 Formulae 
 
 Let us begin by writing equations (9.1.13) in component form. Assume 
that the Cartesian components of r

r
 are xi. Then equations (9.1.13) become 
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However, the dependence of ξj on time is buried in these equations and it would 
be useful to be able to write them so that dtdξ

r
 is explicitly displayed. To 

accomplish this multiply each of the first set of equations by kix ξ∂∂  and add 
the three component equations together. This yields: 
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Multiply each of the second set of equations by ( kix ξ∂∂− & ) and add them 
together to get 
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Finally add equation (9.2.2) and equation (9.2.3) together, rearrange the order of 
summation factoring out the desired quantity ( dtd jξ ) to get 
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The ugly looking term under the second summation sign is known as the 
Lagrangian bracket of  ξk and ξj and, by convention, is written as 
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The reason for pursuing this apparently complicating procedure is that the 
Lagrangian brackets have no explicit time dependence so that they represent a set 
of coefficients that simply multiply the time derivatives of ξj. This reduces the 
equations of motion to six first order linear differential equations which are 
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All we need to do is determine the Lagrangian brackets for an explicit set of 
orbital elements and since they are time independent, they may be evaluated at 
any convenient time such as to . 
 
 
 If we require that the scalar (dot) product be taken over coordinate )r(

r
 

space rather than orbital element )(ξ
r

 space, we can write the Lagrangian bracket 
as 
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Since the partial derivatives are tensors, the scalar product in coordinate space 
does not commute. However, we may show the lack of explicit time dependence 
of the Lagrange bracket by direct partial differentiation with respect to time so 
that 
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or re-arranging the order of differentiation we get  
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Using equation (9.1.6) and Newton's laws we can write this as 
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 Remember that we wrote )t,(r ξ

vr
so that the coordinates xi and their time 

derivatives depend only on the set of orbital elements ξix& j and time. Thus the 
Lagrangian brackets depend only on the particular set of orbital elements and may 
be computed once and for all. There are various procedures for doing this, some 
of which are tedious and some of which are clever, but all of which are relatively 
long. For example, one can calculate them for t = To so that M = E = ν = 0. In 
addition, while one can formulate 36 values of [ξk , ξj] it is clear from equation 
(9.2.5) that 
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This reduces the number of linearly independent values of [ξk , ξj] to 15. 
However, of these 15 Lagrange brackets, only 6 are nonzero [see Taff 1l p.306, 
307] and are given below. 
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where n is just the mean angular motion given in terms of the mean anomaly M 
by 

)Tt(nM 0−=   .                                           (9.2.13) 
 
Thus the coefficients of the time derivatives of ξj are explicitly determined in 
terms of the orbital elements of the osculating orbitξ0

r
.  

 
 To complete the solution, we must deal with the right hand side of 
equation (9.2.6). Unfortunately, the partial derivatives of the perturbing potential 
are likely to involve the orbital elements in a complicated fashion. However, we 
must say something about the perturbing potential or the problem cannot be 
solved. Therefore, let us assume that the behavior of the potential is understood in 
a cylindrical coordinate frame with radial, azimuthal, and vertical coordinates 
(r,ϑ , and z) respectively. We will then assume that the cylindrical components of 
the perturbing force are known and given by 
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Then from the chain rule 
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The partial derivatives of the cylindrical coordinates with respect to the orbital 
elements may be calculated directly and the equations for the time derivatives of 
the orbital elements [equations (9.2.6)] solved explicitly. The algebra is long and 
tedious but relatively straight forward and one gets 
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An alternative set of perturbation equations attributed to Gauss and given by    
Taff 11 (p.3l4) is 
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=L    .                                           (9.2.18) 

These relatively complicated forms for the solution show the degree of 
complexity introduced by the nonlinearity of the equations of motion. However, 
they are sufficient to demonstrate that the problem does indeed have a solution. 
Given the perturbing potential and an approximate two body solution at some 
epoch t0, one can use all of the two body mechanics developed in previous 
chapters to calculate the quantities on the right hand side of equations (9.2.16). 
This allows for a new set of orbital elements to be calculated and the motion of 
the objects followed in time. The process may be repeated allowing for the 
cumulative effects of the perturbation to be included. 
 
 However, one usually relies on the original assumption that the perturbing 
forces are small compared to those that produce the two body motion [equation 
(9.1.3)] .Then all the terms on the left hand side of equation (9.2.16) will be small 
and the motion can be followed for many orbits before it is necessary to change 
the orbital elements. That is the major thrust of perturbation theory. It tells you 
how things ought to change in response to known forces. Thus, if the source of 
the perturbation lies in the plane defining the cylindrical coordinate system (and 
the plane defining the orbital elements) ℵ  will be zero and the orbital      
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inclination (i) and the longitude of the ascending node will not change in time. 
Similarly if the source lies along the z-axis of the system, the semi-major axis (a) 
and eccentricity (e) will be time independent. If the changes in the orbital 
elements are sufficiently small so that one may average over an orbit without any 
significant change, then many of the perturbations vanish. In any event, such an 
averaging procedure may be used to determine equations for the slow change of 
the orbital elements. 
 
 Utility of the development of these perturbation equations relies on the 
approximation made in equation (9.1.3). That is, the equations are essentially first 
order in the perturbing potential. Attempts to include higher order terms have 
generally led to disaster. The problem is basically that the equations of classical 
mechanics are nonlinear and that the object of interest is )t(r

r
. Many small errors 

can propagate through the procedures for finding the orbital elements and then to 
the position vector itself. Since the equations are nonlinear, the propagation is 
nonlinear. In general, perturbation theory has not been terribly successful in 
solving problems of celestial mechanics. So the current approach is generally to 
solve the Newtonian equations of motion directly using numerical techniques. 
Awkward as this approach is, it has had great success in solving specific problems 
as is evidenced by the space program. The ability to send a rocket on a 
complicated trajectory through the satellite system of Jupiter is ample proof of 
that. However, one gains little general insight into the effects of perturbing 
potentials from single numerical solutions. 
 
 Problems such as the Kirkwood Gaps and the structure of the Saturnian 
ring system offer ample evidence of problems that remain unsolved by classical 
celestial mechanics. However, in the case of the former, much light has been shed 
through the dynamics of Chaos (see Wisdom10). There remains much to be solved 
in celestial mechanics and the basic nonlinearity of the equations of motion will 
guarantee that the solutions will not come easily. 
 
 Formal perturbation theory provides a nice adjunct to the formal theory of 
celestial mechanics as it shows the potential power of various techniques of 
classical mechanics in dealing with problems of orbital motion. Because of the 
nonlinearity of the Newtonian equations of motion, the solution to even the 
simplest problem can become very involved. Nevertheless, the majority of 
dynamics problems involving a few objects can be solved one way or another. 
Perhaps it is because of this non-linearity that so many different areas of 
mathematics and physics must be brought together in order to solve these 
problems. At any rate celestial mechanics provides a challenging training field for 
students of mathematical physics to apply what they know. 
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Chapter 9: Exercises 
 
 
1. If the semi-major axis of a planets orbit is changed by ∆a, how does the 

period change? How does a change in the orbital eccentricity ∆e affect the 
period? 

 
 
2. If v1 and v2 are the velocities of a planet at perihelion and aphelion 

respectively, show that 
 
    (1-e)v1 = (1+e)v2  . 
 
 
3. Find the Lagrangian bracket for [e, Ω]. 
 
 
4. Using the Lagrangian and Gaussian perturbation equations, find the 

behavior of the orbital elements for a perturbative potential that has a pure r-
dependence and is located at the origin of the coordinate system. 
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 The references above constitute required reading for any who would 
become a practioner of celestial mechanics. Certainly Morse and Feshbach is one 
of the most venerable texts on theoretical physics and contains more information 
than most theoreticians would use in a lifetime. However, the book should be in 
the arsenal that any theoretician brings to the problems of analysis in physics. I 
still feel that Goldstein's text on classical mechanics is the best and most complete 
of the current era. However, some may find the text by Symon somewhat less 
condensed. The text by Brouwer and Clemence is the most advanced of the 
current texts in the field of celestial mechanics and is liable to remain so for some 
time to come. It is rather formidable, but contains information on such a wide 
range of problems and techniques that it should be at least perused by any student 
of the field. The text by Danby was the logical successor to the time honored 
work of Moulton. Danby introduced vector notation to the subject and made the 
reading much simpler. A.E. Roy expanded on this approach and covered a much 
wider range of topics. The celestial mechanics text by Fitzgerald listed below 
provides a development more common to modem day celestial mechanics and 
contains an emphasis on the orbital mechanics of satellites. This point of view is 
also used by Escobal where the first book on the "Methods of Orbit 
Determination" lays the groundwork for a contemporary discussion of 'rocket 
navigation' in the second book on "Astrodynamics". A much broader view of the 
term astrodynamics is taken by Herrick in his two volume treatise on the subject. 
The five volume 'epic' by Hagihara tries to summarize all that has happened in 
celestial mechanics in the last century and comes close to doing so. The text by 
Taff is one of the most recent of the celestial mechanics texts mentioned here, but 
still largely follows the traditional development started by Moulton. The 
exception is his discussion of perturbation theory which I found philosophically 
satisfying. The Urey Prize lecture by Wisdom should be read in its entirety by 
anyone who is interested in the application of the mathematics of chaos to objects 
in the solar system.  
 
 Below I have given some additional references as 'supplemental reading' 
which I have found helpful from time to time in dealing with the material covered 
in this book. Most any book on modern algebra will contain definitions of what 
constitutes a set or group, any book on modern algebra will contain definitions of 
what constitutes a set or group, but I found Andree very clear and concise. One of 
the best all round books on mathematical analysis with a view to numerical 
applications is that by Arfken. It is remarkably complete and wide ranging. The 
two articles from Chaotic Phenomena in Astrophysics show some further 
application of the subjects discussed by Wisdom. However, the entire book is 
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interesting as it demonstrates how this developing field of mathematics has found 
applications in a number of areas of astrophysics.  
  
 Sokolnikoff and Redheffer is just one of those omnibus references that 
provide a myriad of definitions and development for mathematical analysis 
necessary for any student of the physical sciences. On the other hand, the lectures 
by Ogorodnikov provide one of the most lucid accounts of Liouville's Theorem 
and the implications for a dynamical system in phase space. The text on 
Gravitation by Misner, Thorne, and Wheeler has probably the most contemporary 
and complete treatment of tensors as they apply to the physical world. Although 
the main subject is somewhat tangent to celestial mechanics, it is a book that 
every educated physicist or astrophysicist must read. Since it is rather long, one 
should begin early. One should not leave the references of celestial mechanics 
without a mention of the rare monograph by Paul Herget. While the presentation 
of the material is somewhat encumbered by numerical calculations for which Paul 
Herget was justly renowned, the clarity of his understanding of the problems of 
classical orbit calculation makes reading this work most worthwhile. 
 
1.  Andree, R.V. "Selections from Modern Abstract Algebra" (1958) Henry 
 Holt and Co., New York. 
 
2. Arfken, G. "Mathematical Methods for Physicists" 2nd ed. (1970) 
 Academic Press, New York, San Francisco, London. 
 
3.  Bensimon, D. and Kadanoff, L.P., "The Breakdown of KAM Trajectories" 
 in "Chaotic Phenomena in Astrophysics" (1987) Ed. H. Eichhorn and J.R. 
 Buchler, Ann. New York Acad. Sci. 497, pp. l10-ll7. 
 
4.  Escobal, P.R. , "Methods of Orbit Determination" (1965) John Wiley and 
 Sons, Inc., New York, London, Sydney. 
 
5.  _________ "Methods of Astrodynamics" (1968) John Wiley and Sons, 
 Inc., New York, London, Sydney. 
 
6.  Fitzpatrick, P.M. , "Principles of Celestial Mechanics" (1970) Acadmnic 
 Press Inc, New York, London. 
 
7.  Hagihara, Y. "Celestial Mechanics" Vol. 1-5 (1970-1972) MIT Press, 
 Cambridge Mass. 
 



 
 
 
 
 
 

144

8.  Herget, P., "The Computation of Orbits" (1948) Privately published by the 
 author. 
 
9.  Herrick, S., "Astrodynamics" Vol. 1. (1971) Van Nostrand Reinhold 
 Company, London. 
 
10.  _________, "Astrodynamics" Vol. 2. (1972) Van Nostrand Reinhold 
 Company, London. 
 
11.  Meiss, J.D., "Resonances Fill Stochastic Phase Space" in "Chaotic 
 Phenomena in Astrophysics" (1987) Ed. H. Eichhorn and J.R. Buchler 
 Ann. New York Acad. Sci. 497, pp. 83-96. 
 
12.  Misner, C.W., Thorne, K.S., and Wheeler, J.A., "Gravitation" (1973) 
 W.H. Freeman and Co. San Francisco. 
 
13.  Ogorodnikov, K.F. "Dynamics of Stellar Systems" (1965) Trans.  J.B. 
 Sykes Ed. A. Beer, The Macmillian Company, New York 
 
14.  Roy, A.E., "Orbital Motion" (1982) Adam Hilger Ltd., Bristol. 
 
15.  Sokolnikoff, I.S., and Redheffer, R.M. "Mathematics of Physics and 
 Modern Engineering" (1958) McGraw Hill Book Co. Inc., New York, 
 Toronto, London. 
 
16.  Symon, K.R. "Mechanics" (1953) Addison-Wesley Pub. Co. Inc., 
 Reading. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

145

© Copyright 2004 

Index 
 

A 
 

Airy transit……………………… 20 
Alt-Azimuth coordinate system… 19 
Altitude…………………. 19. 28. 33 
Angle of inclination for an orbit... 86 
Angular momentum…………….. 94 
 definition of……….……. .40 
 of a rigid body…….……. .73 
Aphelion: definition of…….……. 79 
Areal  velocity…………….…….. 64 

Argument of perihelion 
 determination of….……... 97 

Argument of the pericenter 
 definition of…….………   86 

Associativity 
 Definition of……………… 8 
Astronomical Triangle………….. 28 
Astronomica1Zenith …………….19 
Autumnal Equinox. ……………...18 
Axia1vectors……………………. 24 
Azimuth 19.29……………………33 

 
B 

 
Barycentric Coordinates. ………..18 
Basisvectors ……………………..16 
Bernoulli.J…………………...…..43 

  Boundary conditions 
for the equations of motion… 66 

 
C 

 
Canonical equations of Hamilton...48 
Cartesian coordinate. ………..16. 25 
Celestial Latitude……………….. 19 

 

 
 
 

Celestial Longitude……………... 19 
Celestial sphere…………………. 19 
Center of gravity………………... 72 
Center of mass …………………..72 

uniform motion of. …….77 
Central force. ………………...61. 95 
Chaotic phenomena. ……………126 
Comutativity 

Definition of …………… 8 
Configuration space…………… 125 
Conic section 

general equation for……. 69 
Conservation of angular 

 momentum ………......... 62 
Conservation of energy…………. 42 
Conservative force……………… 41 
Cooperative phenomena 

in stellar dynamics. …...125 
Crossproduct……………………..24 

for vectors………………..4 
Curl………………………………… 

definition of……………... 9 
 

D 
 

D.Alembert.s principle……….......42 
Danby.J.M.A. …………………..104 
Declination ………………………17 
Del-operator………………….. 9. 57 
Determinant of a matrix. ……….…7 
Dipole moment………………….. 57 
Dirac delta function ……………...54 
Direction cosines………………... 22 
Distributivity 

definition of……………… 8 



 
 
 
 
 
 

146

Divergence 
definition of………………. 9 

Divergence theorem ……………..53 
 

E 
 

Eccentric Anomaly……………....95 
definition of. ………………80 

Eccentricity……………………... 69 
determination of. ………….95 

Ecliptic………………………….. 18 
Ecliptic coordinates. …………19. 89 
 Elliptic orbit 

energy of………………….69 
Electromagnetic force…………... 52 
Ellipse…………………………... 80 
 Ellipsoid 

general equation of……… 75 
Energy…………………………... 39 
Energy integral…………………...95 
 Equations of motion 

for two bodies……………. 76 
Equatoriel coordinates……… 17. 89 
Ergodic hypothesis……………...124 
Ergodic theorem………………...123 
Euclidean space…………………..16 
Euler.L…………………………….6 
Eulerian angles……………….26. 86 
Eulerian transformation………….27 

 
F 
 

Fixed-point 
for iteration schemes……….84 

 

G 
 

Gauss.K.F………………………… 1 
determination of                      .        
orbital elements…………..104 
perturbation fornulae …….137 

Gaussian constant……………….. 83 
Generalized coordinates….43. 62. 76 
Generalized momenta…………... 64 

definition of……………….. 47 
Geocentric coordinates……….17, 21 
Geocentric longitude……………. 21 
Geodetic coordinates……………..20 
Geodetic latitude…………………21 
Geodetic longitude……………….21 
Geographic coordinates………….20 
Goldstein.H………………………26 
 Gradient 

definition of………………… 9 
operator ……………………58 

Gravitational force……………….52 
Gravitational potential…………...52 
Gravitational potential energy…...52 
Greenwich……………………......20 
Greenwich mean time……………36 
Greenwich sidereal time…………36 
Group theory………………………3 

 
 
 

H 
 

Hamilton.W.R. …………………..46 
Hamiltonian. ……………47. 64. 126 

for central forces…………….61 



 
 
 
 
 
 

147

Heliocentric coordinates…………17 
 Heliocentric coordinates  

of the earth…………………..89 
Hermitian matrix…………………..7 
 Holonomic constraints 

defined………………………43 
Horizon…………………………..19 
Hour angle………………………..29 
 Hyperbolic orbit 

energy of…………………… 69 
Hyperion………………………..126 

 
I 
 

Identity element………………...…3 
 Initial value 

for the equations of motion… 66 
Inner product………………………4 
Integral of the motion…………… 66 
International atomic time………...34 
Isolating Integrals……………….123 

 
J 

 
Jacobi.K ………………......114, 122 
Jacobi .s integral………………...114 
Jacobian 

of the perturbetion …………133 
 

 
K 

 
KAM theorem……………….….126 
Kepler. J. ……………………….. 97 
Kepler's equation…………………82 

and Gauss.s method………..105 
for hyperbolic and                     . 

 parabolic orbits……………...82 
solutionof……………………84 

Kepler's first law……………..69. 79 
Kepler's second law………….64. 81 
Kinetic energy……………………45 

of a rigid body…………….....74 
Kirkwood gaps………………….139 
Kramer’s rule…………………….. 7 
Kronecker delta………..…..5. 16. 22 

 
L 

 
Lagrange.J.L. ……………………..1 
Lagrange.s equations…………… 46 
Lagrange.s identity……………..122 

 Lagrangian 
definition of……………...45 
for central forces………...61 
for N-bodies……………119 

Lagrangian bracket……………...134 
Lagrangian equations of motion 

for two bodies……………76 
 Lagrangian points 

equilibrium of……..115. 117 
Laplace,P.S. ……………………100 
Laplace’s equation………….……55 
Laplacian…………………………53 
 Latitude 

astronomical…………….20 
geocentric……………….21 
geodetic………………….21 

Latitude-Longitude coordinates….20 
Least Squares…………………….94 



 
 
 
 
 
 

148

Levi-Civita tensor……………..5. 24 
Linear momentum 

conservation of…………..40 
Linear transformations……………2l 
Liouville’s theorem……………..124 
Local sidereal time……………….37 
 Longitude 

astronanical……………..20 
geocentric……………….21 
geodetic…………………21 

Longitude  
of the Ascending Node……. 86. 107 
Longitude of the Pericenter 

definition of……………. 86 
 

M 
 

 Matrix 
hermitian…………………7 
inverse……………………7 
symmetric………………...7 

Matrix addition…………………….7 
Matrix product…………………….6 
Maximum likelihood principle.…..94 
Mean Anomaly………………….. 95 

definition of……………. 80 
Moment of inertia tensor…………74 
Momentum……………………….39 
Moulton. F .R. …………….104, 118 
Multipole moments 

of the potential…………...57 
 
 
 
 

N 
 

N-Body problem……………….119 
Nabla………………………….…. 9 
Newton-Raphson iteration. ……...84 
 Nonholonanic constraints 

defined……………………43 
North celestial pole…………. 29, 89 

 
O 

 
Operators…………………………. 9 

Laplacian………………….53 
Orbit equation……………………68 
 Orbital elements 

determination of…………...95 
indeterminacy of…………107 
perturbation of……………131 

Orthogonal coordinate systems….16 
Orthogonal unitary                            .                        
 transformations……..……23 
Orthonormal transformations…….23 
Osculating orbit…………………132 
Osculation condition……………132 
Outer product…………………….. 4 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

149

P 
 

 Parabolic orbit 
energy of…………………. 69 

Parallactic angle……………...29. 33 
 Perihelion 

definition of……………… 79 
Perturbation theory……………..129 
Perturbing force………………...136 
Perturbing potential…………….130 
Phase space……………15. 123. 126 
 Phase transition 

in thermodynamics………126 
Poincare. H …………………......126 
Poisson’s equation……………….55 
Potential………………………….52 
Potential energy………………… 41 
  Precession 

of  Mercury's orbit……..1. 112 
Prime meridian……………….29, 89 
Principia …………………………..1 
 Principle axes 

of an ellipsoid……………...75 
Principle axis coordinate system ...75 
Principle moments of inertia……..75 
Pseudo vectors…………………...24 
Pseudo-potential………………… 67 
Pseudo-tensor 

tensor density………………24 
 

Q 
 

Quadrupole moment……………...57 
 
 

S 
 

Scalar product……………………25 
of tensors………………..57 

Scalars……………………………..2 
 Semi-major axis 

determination of………... 95 
Set theory………………………… 3 
Sidereal hour angle………………19 
Sidereal period…………………...98 
Sidereal time…………………29. 34 
Special theory of relativity……….34 
Stokes theorem…………………...41 
Synodic period…………………...98 

 
T 

 
Taff. L.G. …………………135, 137 
 Taylor series 

for orbit determination……102 
Tensor……………………………..5 
Tensor densities………………….24 
Tensor product…………………… 4 
Test particle ……………………..55 
Thermodynamics……………….126 
 Three body problem …...…111, 126 
Time……………………………...34 
Time derivative operator…………67 
Time of perihelion passage……..108 

as an orbital element……….. 88 
Topocentric coordinates……...17, 90 
 Torque 

definition of………………… 40 
 
 



 
 
 
 
 
 

150

Transformation 
rotational…………………... 25 

 Transformation matrix 
for the Astronomical Triangle...32 

Transpose of the matrix……….7. 23 
True Anomaly………………95. 107 

definition of……………………79 
Two body problem……………….76 

 
 

U –Z 
 
 

Universal time……………………36 
 
 

Vector…………………………….. 3 
scalar product…………………..4 
triple product………………….74 

Vemal equinox………….18. 89. 107 
hour.angle of …………………35 

Virial theorem ………………….121 
Virtual displacements…………….43 
Virtual work…………….……42. 43 
Vis Viva integral………………... 95 

 
 

Work 
definition of………………….40 

 
 

Zenith…………………………….19 
Zenith distance…………………...29 
Zero velocity surfaces…………..115 
Zero-vector………………………...4 

 
 
 
 
 

 
 
 
 
 
 
 
 
 


	Celestial Mechanics part 1 bookfnt.pdf
	Celestial Mechanics Chapter1.pdf
	Celestial Mechanics Chapter2.pdf
	Celestial Mechanics Chapter3.pdf
	Celestial Mechanics Chapter4.pdf
	Celestial Mechanics Chapter5.pdf
	Celestial Mechanics Chapter6r.pdf
	Celestial Mechanics Chapter7r.pdf
	Celestial Mechanics Chapter8.pdf
	Celestial Mechanics Chapter9.pdf
	Celestial Mechanics BookBack.pdf

